238 research outputs found

    Biochemical and biophysical characterization of cell-free synthesized Rift Valley fever virus nucleoprotein capsids enables in vitro screening to identify novel antivirals

    Get PDF
    Cell fractionation indicates that the compounds access the nucleus. The most potent compounds were exposed to HEK cells at a concentration of 1 ΟM for 24 h, after which the nucleus was separated from the cytoplasm. The concentration of these two blue compounds could be observed by the relative higher intensity in the nucleus compared to that in the cytoplasm. (PDF 3721 kb

    An Essential Role for the Tetraspanin LHFPL4 in the Cell-Type-Specific Targeting and Clustering of Synaptic GABAReceptors

    Get PDF
    Inhibitory synaptic transmission requires the targeting and stabilization of GABAA receptors (GABAARs) at synapses. The mechanisms responsible remain poorly understood, and roles for transmembrane accessory proteins have not been established. Using molecular, imaging, and electrophysiological approaches, we identify the tetraspanin LHFPL4 as a critical regulator of postsynaptic GABAAR clustering in hippocampal pyramidal neurons. LHFPL4 interacts tightly with GABAAR subunits and is selectively enriched at inhibitory synapses. In LHFPL4 knockout mice, there is a dramatic cell-type-specific reduction in GABAAR and gephyrin clusters and an accumulation of large intracellular gephyrin aggregates in vivo. While GABAARs are still trafficked to the neuronal surface in pyramidal neurons, they are no longer localized at synapses, resulting in a profound loss of fast inhibitory postsynaptic currents. Hippocampal interneuron currents remain unaffected. Our results establish LHFPL4 as a synapse-specific tetraspanin essential for inhibitory synapse function and provide fresh insights into the molecular make-up of inhibitory synapses

    Social stress exacerbates the aversion to painful experiences in rats exposed to chronic pain: the role of the locus coeruleus

    Get PDF
    Stressful experiences seem to negatively influence pain perception through as yet unknown mechanisms. As the noradrenergic locus coeruleus (LC) nucleus coordinates many components of the stress response, as well as nociceptive transmission, we evaluated whether the sensory and affective dimension of chronic neuropathic pain worsens in situations of stress due to adaptive changes of LC neurons. Accordingly, male rats were socially isolated for 5 weeks, and in the last 2 weeks, neuropathic pain was induced by chronic constriction injury. In this situation of stress, chronic pain selectively heightened the animal's aversion to painful experiences (affective pain), as measured in the place escape/avoidance test, although no changes were observed in the sensory dimension of pain. In addition, electrophysiological recordings of LC neurons showed a low tonic but exacerbated nociceptive-evoked activity when the injured paw was stimulated. These changes were accompanied by an increase in tyrosine hydroxylase and gephyrin expression in the LC. Furthermore, intra-LC administration of bicuculline, a γ-aminobutyric acid-A receptor antagonist, attenuated the negative affective effects of pain. These data show that changes in the LC are greater than those expected from the simple summation of each independent factor (pain and stress), revealing mechanisms through which stressors may exacerbate pain perception without affecting the sensorial dimensio

    Human miR-1271 is a miR-96 paralog with distinct non-conserved brain expression pattern

    Get PDF
    Recent deep-sequencing efforts have identified many novel non-conserved small RNAs that are expressed at low levels in certain mammalian cells. Whether these small RNAs are important for mammalian physiology is debatable, therefore we explored the function of one such RNA, human miR-1271. This small RNA is similar in sequence to miR-96, a highly conserved microRNA that when mutated causes hearing loss in humans and mice. Although the miR-1271 and miR-96 sequences differ slightly, our in vitro assays indicate that they have an identical regulatory activity. We have identified brain-expressed mRNAs from genes including, GPHN, RGS2, HOMER1 and KCC2, which share the same miR-96 and miR-1271 regulatory elements. Interestingly, human miR-1271 is expressed abundantly in brain tissue, where miR-96 is not highly expressed. The rodent miR-1271 precursor contains several sequence differences in the precursor stem, which appear to reduce the efficiency of microRNA processing. Our data indicate that although miR-1271 and miR-96 function identically in vitro, they function to some extent uniquely in vivo. Given the expression patterns and nature of the target genes, miR-1271 may have a significant, although non-conserved, role in regulating aspects of neural development or function in humans

    Exon Silencing by UAGG Motifs in Response to Neuronal Excitation

    Get PDF
    Alternative pre-mRNA splicing plays fundamental roles in neurons by generating functional diversity in proteins associated with the communication and connectivity of the synapse. The CI cassette of the NMDA R1 receptor is one of a variety of exons that show an increase in exon skipping in response to cell excitation, but the molecular nature of this splicing responsiveness is not yet understood. Here we investigate the molecular basis for the induced changes in splicing of the CI cassette exon in primary rat cortical cultures in response to KCl-induced depolarization using an expression assay with a tight neuron-specific readout. In this system, exon silencing in response to neuronal excitation was mediated by multiple UAGG-type silencing motifs, and transfer of the motifs to a constitutive exon conferred a similar responsiveness by gain of function. Biochemical analysis of protein binding to UAGG motifs in extracts prepared from treated and mock-treated cortical cultures showed an increase in nuclear hnRNP A1-RNA binding activity in parallel with excitation. Evidence for the role of the NMDA receptor and calcium signaling in the induced splicing response was shown by the use of specific antagonists, as well as cell-permeable inhibitors of signaling pathways. Finally, a wider role for exon-skipping responsiveness is shown to involve additional exons with UAGG-related silencing motifs, and transcripts involved in synaptic functions. These results suggest that, at the post-transcriptional level, excitable exons such as the CI cassette may be involved in strategies by which neurons mount adaptive responses to hyperstimulation

    Collybistin and gephyrin are novel components of the eukaryotic translation initiation factor 3 complex

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>Collybistin (CB), a neuron-specific guanine nucleotide exchange factor, has been implicated in targeting gephyrin-GABA<sub>A </sub>receptors clusters to inhibitory postsynaptic sites. However, little is known about additional CB partners and functions.</p> <p>Findings</p> <p>Here, we identified the p40 subunit of the eukaryotic translation initiation factor 3 (eIF3H) as a novel binding partner of CB, documenting the interaction in yeast, non-neuronal cell lines, and the brain. In addition, we demonstrated that gephyrin also interacts with eIF3H in non-neuronal cells and forms a complex with eIF3 in the brain.</p> <p>Conclusions</p> <p>Together, our results suggest, for the first time, that CB and gephyrin associate with the translation initiation machinery, and lend further support to the previous evidence that gephyrin may act as a regulator of synaptic protein synthesis.</p

    Gephyrin phosphorylation in the functional organization and plasticity of GABAergic synapses

    Get PDF
    Gephyrin is a multifunctional scaffold protein essential for accumulation of inhibitory glycine and GABAA receptors at post-synaptic sites. The molecular events involved in gephyrin-dependent GABAA receptor clustering are still unclear. Evidence has been recently provided that gephyrin phosphorylation plays a key role in these processes. Gephyrin post-translational modifications have been shown to influence the structural remodeling of GABAergic synapses and synaptic plasticity by acting on post-synaptic scaffolding properties as well as stability. In addition, gephyrin phosphorylation and the subsequent phosphorylation-dependent recruitment of the chaperone molecule Pin1 provide a mechanism for the regulation of GABAergic signaling. Extensively characterized as pivotal enzyme controlling cell proliferation and differentiation, the prolyl-isomerase activity of Pin1 has been shown to regulate protein synthesis necessary to sustain the late phase of long-term potentiation at excitatory synapses, which suggests its involvement at synaptic sites. In this review we summarize the current state of knowledge of the signaling pathways responsible for gephyrin post-translational modifications. We will also outline future lines of research that might contribute to a better understanding of molecular mechanisms by which gephyrin regulates synaptic plasticity at GABAergic synapses. \ua9 2014 Zacchi, Antonelli and Cherubini

    Pin1-dependent signaling negatively affects GABAergic transmission by modulating neuroligin2/gephyrin interaction

    Get PDF
    The cell adhesion molecule Neuroligin2 (NL2) is localized selectively at GABAergic synapses, where it interacts with the scaffolding protein gephyrin in the post-synaptic density. However, the role of this interaction for formation and plasticity of GABAergic synapses is unclear. Here, we demonstrate that endogenous NL2 undergoes proline-directed phosphorylation at its unique S714-P consensus site, leading to the recruitment of the peptidyl-prolyl cis-trans isomerase Pin1. This signalling cascade negatively regulates NL2' s ability to interact with gephyrin at GABAergic post-synaptic sites. As a consequence, enhanced accumulation of NL2, gephyrin and GABA A receptors was detected at GABAergic synapses in the hippocampus of Pin1-knockout mice (Pin1\ufffd/\ufffd) associated with an increase in amplitude of spontaneous GABA A -mediated post-synaptic currents. Our results suggest that Pin1-dependent signalling represents a mechanism to modulate GABAergic transmission by regulating NL2/gephyrin interaction. \ufffd 2014 Macmillan Publishers Limited. All rights reserved

    A balanced chromosomal translocation disrupting ARHGEF9 is associated with epilepsy, anxiety, aggression, and mental retardation

    Get PDF
    Clustering of inhibitory -aminobutyric acidA (GABAA) and glycine receptors at synapses is thought to involve key interactions between the receptors, a scaffolding protein known as gephyrin and the RhoGEF collybistin. We report the identification of a balanced chromosomal translocation in a female patient presenting with a disturbed sleep-wake cycle, late-onset epileptic seizures, increased anxiety, aggressive behavior, and mental retardation, but not hyperekplexia. Fine mapping of the breakpoint indicates disruption of the collybistin gene (ARHGEF9) on chromosome Xq11, while the other breakpoint lies in a region of 18q11 that lacks any known or predicted genes. We show that defective collybistin transcripts are synthesized and exons 7-10 are replaced by cryptic exons from chromosomes X and 18. These mRNAs no longer encode the pleckstrin homology (PH) domain of collybistin, which we now show binds phosphatidylinositol-3-phosphate (PI3P/PtdIns-3-P), a phosphoinositide with an emerging role in membrane trafficking and signal transduction, rather than phosphatidylinositol 3,4,5-trisphosphate (PIP3/PtdIns-3,4,5-P) as previously suggested in the membrane activation model of gephyrin clustering. Consistent with this finding, expression of truncated collybistin proteins in cultured neurons interferes with synaptic localization of endogenous gephyrin and GABAA receptors. These results suggest that collybistin has a key role in membrane trafficking of gephyrin and selected GABAA receptor subtypes involved in epilepsy, anxiety, aggression, insomnia, and learning and memory

    Transcriptome Analysis of the Hippocampal CA1 Pyramidal Cell Region after Kainic Acid-Induced Status Epilepticus in Juvenile Rats

    Get PDF
    Molecular mechanisms involved in epileptogenesis in the developing brain remain poorly understood. The gene array approach could reveal some of the factors involved by allowing the identification of a broad scale of genes altered by seizures. In this study we used microarray analysis to reveal the gene expression profile of the laser microdissected hippocampal CA1 subregion one week after kainic acid (KA)-induced status epilepticus (SE) in 21-day-old rats, which are developmentally roughly comparable to juvenile children. The gene expression analysis with the Chipster software generated a total of 1592 differently expressed genes in the CA1 subregion of KA-treated rats compared to control rats. The KEGG database revealed that the identified genes were involved in pathways such as oxidative phosporylation (26 genes changed), and long-term potentiation (LTP; 18 genes changed). Also genes involved in Ca2+ homeostasis, gliosis, inflammation, and GABAergic transmission were altered. To validate the microarray results we further examined the protein expression for a subset of selected genes, glial fibrillary protein (GFAP), apolipoprotein E (apo E), cannabinoid type 1 receptor (CB1), Purkinje cell protein 4 (PEP-19), and interleukin 8 receptor (CXCR1), with immunohistochemistry, which confirmed the transcriptome results. Our results showed that SE resulted in no obvious CA1 neuronal loss, and alterations in the expression pattern of several genes during the early epileptogenic phase were comparable to previous gene expression studies of the adult hippocampus of both experimental epileptic animals and patients with temporal lobe epilepsy (TLE). However, some changes seem to occur after SE specifically in the juvenile rat hippocampus. Insight of the SE-induced alterations in gene expression and their related pathways could give us hints for the development of new target-specific antiepileptic drugs that interfere with the progression of the disease in the juvenile age group
    corecore