20 research outputs found

    OM301, a Synthetic Polypeptide Containing the p53TA (Transactivation) Domain, Impairs Mitochondrial Activity and Survival of Myeloma Cells

    Full text link
    Abstract INTRODUCTION: Although the treatment of patients with multiple myeloma (MM) has dramatically improved, those with high-risk characteristics, including the deletion or mutation of the master tumor suppressor gene TP53 on chromosome 17, experience limited survival. OM301 is a synthetic polypeptide containing the p53TA (transactivation) domain, which prevents p53 degradation through inhibition of MDM2. Here, we demonstrate that OM301 has strong anti-MM activity in vitro and in vivo. RESULTS: We first assessed the cytotoxic effects of OM301 in MM cell lines with varying TP53 status (TP53 wild type: MM.1S, H929; TP53 mutated/null: L363, RPMI-8226, U266, JJN3, KMS11) and found that OM301 exerts significant cytotoxic effects at a concentration of ~5 µM in all cell lines we tested, while it was minimally toxic to human peripheral blood mononuclear cells. Next, using immunocompromised NSG mice models injected with MM.1S, we determined the in vivo efficacy of OM301 in three different studies. Many potent anticancer agents, particularly of peptide origin, show prominent anti-tumor effects but fail to sustain similar effects when given intraperitoneally because of poor absorption, distribution, metabolism and excretion properties. OM301 at an intraperitoneal dose of 20 mg/kg/body weight twice a day induced significant reduction in tumor size with respect to vehicle control, suggesting the stability of OM301 without any loss of its activity (n=7, p&amp;lt;0.0001). Accordingly, we investigated its effect in a disseminated NSG/MM.1S model and found that it significantly increased survival (p&amp;lt;0.0001) (see Figure). Because OM301 was designed to simulate the p53 interaction domain with MDM2, we first determined its effect on p53-MDM2 crosstalk using a p53-MDM2 co-Immunoprecipitation (co-IP) assay and compared it with effects from Nutlin-3a, a known inhibitor of p53-MDM2. The co-IP data showed that, unlike Nutlin-3a, OM301 does not inhibit the p53-MDM2 interaction. Thus, to confirm our findings, we first overexpressed MDM2 in HeLa cells, and, using MDM2-IP and p53-MDM2 co-IP, found similar observations. Additionally, OM301 also failed to induce endogenous upregulation of genes activated by p53, such as MDM2 and p21, as opposed to results from Nutlin-3a. RNA sequencing data also showed a distinctive OM301signature, as compared to Nutlin-3a in MM cells. While treatment of Nutlin-3a induced expression of p53-activated canonical genes, OM301-treated cells showed alterations in genes involved in inflammatory responses, c-Myc regulated genes, fatty acid metabolism, glucose metabolism, and oxidative phosphorylation, among others. Next, to dissect its underlying mechanism, we dual-tagged OM301 with fluorophores at the 3' and 5' ends to study its localization and its stability in MM cells. Indeed, OM301 was found to be stable and mainly localized in the cytosol. We then modified OM301 by biotinylation of its penetratin end and first verified its cytotoxic effect in different MM cell lines, which was similar to that of native OM301. The biotinylated OM301 was then immunoprecipitated using streptavidin beads. The streptavidin pull-down and subsequent proteomic analysis confirmed that OM301 does not interact with MDM2 but interacts with c-Myc and with proteins localized in mitochondria, including Bcl-2 and Bcl-2 family members such as Bclaf1, Bcl2L13, and Bcl2L1. Pull-down experiments and immunoblot analysis validated Bcl-2/OM301 interactions. To further evaluate the relative binding potentials of OM301, we performed molecular docking studies using the HPEPDOCK server (Yan et al., Nat Protoc. 2020;15:1829). Post-docking, the calculated docking scores for OM301 was -281, suggesting that OM301directly interacts with Bcl-2. Thus, we evaluated the effects of OM301 on mitochondrial function and physiology. Treatment with OM301 decreased mitochondrial membrane potential in different MM cell lines. OM301 also increased mitochondrial superoxide production and induced mitophagy and mitochondrial fission as seen by electron microscopy. CONCLUSION: Here, we report for the first time that OM301, although designed for p53-selective cells, may instead interact with Bcl-2, which in turn induces mitochondrial dysfunction, leading to cell death irrespective of their TP53 status. Our data suggest that OM301 may be a novel and effective therapeutic option for MM. Figure 1 Figure 1. Disclosures Krishnan: REGENERON: Consultancy; MAGENTA: Consultancy; BMS: Consultancy, Current equity holder in publicly-traded company, Speakers Bureau; JANSSEN: Consultancy, Research Funding; City of Hope Cancer Center: Current Employment; SANOFI: Consultancy; GSK: Consultancy; Amgen: Speakers Bureau. Marcucci: Novartis: Other: Speaker and advisory scientific board meetings; Agios: Other: Speaker and advisory scientific board meetings; Abbvie: Other: Speaker and advisory scientific board meetings. </jats:sec

    Design of Potent pan-IAP and Lys-Covalent XIAP Selective Inhibitors Using a Thermodynamics Driven Approach

    No full text
    Recently we reported that rapid determination of enthalpy of binding can be achieved for a large number of congeneric agents or in combinatorial libraries fairly efficiently. We show that using a thermodynamic Craig plot can be very useful in dissecting the enthalpy and entropy contribution of different substituents on a common scaffold, in order to design potent, selective, or pan-active compounds. In our implementation, the approach identified a critical Lys residue in the BIR3 domain of XIAP. We report for the first time that it is possible to target such residue covalently to attain potent and selective agents. Preliminary cellular studies in various models of leukemia, multiple myeloma, and pancreatic cancers suggest that the derived agents possess a potentially intriguing pattern of activity, especially for cell lines that are resistant to the pan-IAP antagonist and clinical candidate LCL161

    Immune Mediated Mechanisms of Resistance to Daratumumab

    Full text link
    Abstract Introduction: Daratumumab (Dara) is a human monoclonal antibody targeting the highly expressed multiple myeloma (MM) surface receptor CD38, with significant activity in relapsed MM. However, resistance to Dara develops in virtually all patients (pts). Thus, in order to maximize its clinical activity and prevent resistance, it is imperative to understand why pts stop responding. Our group recently reported that, in addition to the malignant cells, several immune-effector cells also express CD38. Thus, we hypothesized that the expression of CD38 or lack of it on non-cancer immune cell-subsets may also play a role in both clinical response and resistance to Dara. Results: To address our hypothesis, we analyzed CD38 surface expression in CD138+ MM cells isolated from 5 Dara-naïve (D-naïve) pts and from 8 Dara progressing pts (D-prg) who had discontinued Dara therapy for at least 4 weeks prior to analysis. We observed that the CD138+ MM-cells of D-prg displayed a lower median fluorescence intensity (MFI) of CD38 compared to the MFI of MM cells isolated from the D-naïve (p=0.04); no significant difference was however observed in the percentage of CD38+ MM cells between the two groups. In fact, all of the MM cells expressed CD38 in both D-naïve and D-prg, supporting the hypothesis that resistance to Dara was not mediated by loss of CD38 expression on MM cells. Next, we looked at whether CD38 on the surface of MM cells from D-prg was still recognizable by Dara. Thus, we treated MM cells ex-vivo with Dara at the clinically achievable concentration of 100 μg/ml. We showed that Dara was still able to bind CD38 on the surface of the D-prg CD138+ MM cells, since, after Dara treatment, no CD38+ signal was detected upon staining with a CD38 monoclonal antibody sharing the same targeting CD38 epitope (clone IB6) (Fig.1a). Conversely, we detected a CD38+ signal when a different anti-human CD38 multi-epitope antibody was used in a similar experiment (Cytognos) (Fig.1b). CD38 mRNA expression was observed in all MM cells isolated from D-prg, and we were not able to identify any missense mutations in CD38 mRNA from MM cells of D-prg for whom material was available for analysis. Thus, having demonstrated that resistance to Dara was not related to the expression of CD38 on the MM-cells, we turned our attention to the MM bone marrow (BM) microenvironment (ME). We performed RNA-sequencing of the BM-ME depleted of the CD138+ MM cells obtained from the D-prg (n=5) and D-naïve (n=5). A gene expression signature differentiated the two groups. In D-prg, we observed a significant downregulation (fold-change&lt;0.5, p&lt;0.05) of 193 genes. DAVID functional annotation showed that the immune response-regulating genes, including TLR8, CD47, CXCL10 and CXCL4, were the most downregulated gene pathways in D-prg vs D-naïve (p&lt;0.0001) (Fig.1c), supporting the notion that changes in the immune compartment of the ME may play a role in Dara resistance. Multi-parametric flow analysis showed that surface CD38 was significantly downregulated in terms of both MFI and percent in several immune cell subsets within the BM and peripheral blood (PB) of D-prg (n=14), in contrast to the BM and PB of the D-naïve (n=20) and the PB of the responding pts (n=6). Single cell RNA sequencing of PBMCs from naïve pts and D-prg is currently ongoing. Cell killing assays show that total PBMCs obtained from the D-prg, which have low/null CD38 expression in contrast to D-naïve and healthy donors, have no capability to kill CD38+ MM cells in the presence of Dara. However, total PBMCs obtained from D-naïve maintain an intact MM killing ability. Cell separation of the PBMC CD38+ and CD38- fractions obtained from healthy donors shows that Dara induced effector-mediated MM cell killing only in the CD38+ PBMCs treated with Dara; no killing effect was observed when the PBMCs CD38-negative fraction was used in the same experimental conditions. Moreover, killing assays show that Dara activates PBMCs to target CD38+ MM cells even when MM cells are not directly exposed to the antibody and only the effectors are treated. Conclusions: Our data are supportive of the hypothesis that loss of Dara binding to MM-cell surface CD38 or the complete loss of CD38 on MM cells may not necessarily be the cause of Dara treatment resistance. We instead propose that Dara binding on CD38+ immune effector cells may be critical and that the loss of CD38 expression on these cells can lead to mechanisms of Dara-acquired resistance. Disclosures Rosenzweig: Celgene: Speakers Bureau. Krishnan:Celgene: Consultancy, Equity Ownership, Speakers Bureau; Janssen: Consultancy, Speakers Bureau; Sutro: Speakers Bureau; Takeda: Speakers Bureau; Onyx: Speakers Bureau. </jats:sec

    Emergence of influenza B/Victoria in the Micronesian US-affiliated Pacific Islands, spring 2019

    No full text
    Data collected through routine syndromic surveillance for influenza-like illness in the Micronesian United States-affiliated Pacific Islands highlighted out-of-season influenza outbreaks in the spring of 2019. This report describes the data collected through the World Health Organization’s Pacific Syndromic Surveillance System for the Commonwealth of the Northern Mariana Islands (CNMI), Guam, the Federated States of Micronesia (FSM) and the Republic of the Marshall Islands (RMI). Compared with historical data, more cases of influenza-like illness were observed in all four islands described here, with the highest number reported in Guam in week 9, CNMI and FSM in week 15, and RMI in week 19. The outbreaks predominantly affected those aged &lt;20 years, with evidence from CNMI and RMI suggesting higher attack rates among those who were unvaccinated. Cases confirmed by laboratory testing suggested that influenza B was predominant, with 83% (99/120) of subtyped specimens classified as influenza B/Victoria during January–May 2019. These outbreaks occurred after the usual influenza season and were consistent with transmission patterns in Eastern Asia rather than those in Oceania or the United States of America, the areas typically associated with the United States-affiliated Pacific Islands due to their geographical proximity to Oceania and political affiliation with the United States of America. A plausible epidemiological route of introduction may be the high levels of international tourism from Eastern Asian countries recorded during these periods of increased influenza B/Victoria circulation. This report demonstrates the value of year-round surveillance for communicable diseases and underscores the importance of seasonal influenza vaccination, particularly among younger age groups.</jats:p

    Daratumumab induces mechanisms of immune activation through CD38+ NK cell targeting

    Full text link
    AbstractDaratumumab (Dara), a multiple myeloma (MM) therapy, is an antibody against the surface receptor CD38, which is expressed not only on plasma cells but also on NK cells and monocytes. Correlative data have highlighted the immune-modulatory role of Dara, despite the paradoxical observation that Dara regimens decrease the frequency of total NK cells. Here we show that, despite this reduction, NK cells play a pivotal role in Dara anti-MM activity. CD38 on NK cells is essential for Dara-induced immune modulation, and its expression is restricted to NK cells with effector function. We also show that Dara induces rapid CD38 protein degradation associated with NK cell activation, leaving an activated CD38-negative NK cell population. CD38+ NK cell targeting by Dara also promotes monocyte activation, inducing an increase in T cell costimulatory molecules (CD86/80) and enhancing anti-MM phagocytosis activity ex-vivo and in vivo. In support of Dara’s immunomodulating role, we show that MM patients that discontinued Dara therapy because of progression maintain targetable unmutated surface CD38 expression on their MM cells, but retain effector cells with impaired cellular immune function. In summary, we report that CD38+ NK cells may be an unexplored therapeutic target for priming the immune system of MM patients.</jats:p
    corecore