5 research outputs found

    Understanding modes of negative differential resistance in amorphous and polycrystalline vanadium oxides

    Full text link
    © 2020 Author(s). Metal-oxide-metal devices based on amorphous VOx are shown to exhibit one of two distinct negative differential resistance (NDR) characteristics depending on the maximum current employed for electroforming. For low compliance currents they exhibit a smooth S-type characteristic and have a temperature-dependent device resistance characterized by an activation energy of 0.25 eV, consistent with conduction in polycrystalline VO2, while for high compliance currents they exhibit an abrupt snap-back characteristic and a resistance characterized by an activation energy of 0.025 eV, consistent with conduction in oxygen deficient VOx. In both cases, the temperature dependence of the switching voltage implies that the conductivity change is due to the insulator-metal transition in VO2. From this analysis, it is concluded that electroforming at low currents creates a conductive filament comprised largely of polycrystalline VO2, while electroforming at high currents creates a composite structure comprised of VO2 and a conductive halo of oxygen deficient VOx. The effect of electroforming on the NDR mode is then explained with reference to a lumped element model of filamentary conduction that includes the effect of a parallel resistance created by the halo. These results provide new insight into the NDR response of vanadium-oxide-based devices and a basis for designing devices with specific characteristics

    Spontaneous Emergence of Optically Polarizing Nanoscale Structures by Co-Deposition of Aluminum with Refractory Metals: Implications for High-Temperature Polarizers

    No full text
    The unexpected growth of highly aligned and optically polarizing metallic fins during physical vapor deposition under modestly oblique conditions is investigated. The fins exhibit nanoscale dimensions and are formed when Al is co-sputtered with any of V, Cr, Nb, Mo, Ta, W, Ru, Fe, Ni, Pt, Zr, Mg, and Ti. It is proposed that the phenomenon is caused by anomalously low atomic mobility in the alloys and intermetallic compounds formed by co-depositing with Al. In contrast, when Cu, Ag, and Au (which diffuse more rapidly in Al) are deposited, no fins form. There is a sharp visible transition in optical properties as the ratio of Al to other element is decreased: the color of the sample changes from black to silver-white for compositions containing less than about 55 atom % Al. The region over which the color change occurs is associated with a very strongly polarized reflectance. Cross-sectional elemental mapping and Monte Carlo simulations suggest that growth of the fins may be nucleated by Al hillocks and enhanced by shadowing effects. The diversity of suitable metals makes this a versatile technique for producing nanoscale polarizing surfaces suitable for high-flux and high-temperature applications

    Spontaneous Emergence of Optically Polarizing Nanoscale Structures by Co-Deposition of Aluminum with Refractory Metals: Implications for High-Temperature Polarizers

    No full text
    The unexpected growth of highly aligned and optically polarizing metallic fins during physical vapor deposition under modestly oblique conditions is investigated. The fins exhibit nanoscale dimensions and are formed when Al is co-sputtered with any of V, Cr, Nb, Mo, Ta, W, Ru, Fe, Ni, Pt, Zr, Mg, and Ti. It is proposed that the phenomenon is caused by anomalously low atomic mobility in the alloys and intermetallic compounds formed by co-depositing with Al. In contrast, when Cu, Ag, and Au (which diffuse more rapidly in Al) are deposited, no fins form. There is a sharp visible transition in optical properties as the ratio of Al to other element is decreased: the color of the sample changes from black to silver-white for compositions containing less than about 55 atom % Al. The region over which the color change occurs is associated with a very strongly polarized reflectance. Cross-sectional elemental mapping and Monte Carlo simulations suggest that growth of the fins may be nucleated by Al hillocks and enhanced by shadowing effects. The diversity of suitable metals makes this a versatile technique for producing nanoscale polarizing surfaces suitable for high-flux and high-temperature applications
    corecore