2,072 research outputs found
On Exceptional Times for generalized Fleming-Viot Processes with Mutations
If is a standard Fleming-Viot process with constant mutation rate
(in the infinitely many sites model) then it is well known that for each
the measure is purely atomic with infinitely many atoms. However,
Schmuland proved that there is a critical value for the mutation rate under
which almost surely there are exceptional times at which is a
finite sum of weighted Dirac masses. In the present work we discuss the
existence of such exceptional times for the generalized Fleming-Viot processes.
In the case of Beta-Fleming-Viot processes with index we
show that - irrespectively of the mutation rate and - the number of
atoms is almost surely always infinite. The proof combines a Pitman-Yor type
representation with a disintegration formula, Lamperti's transformation for
self-similar processes and covering results for Poisson point processes
The Mean Drift: Tailoring the Mean Field Theory of Markov Processes for Real-World Applications
The statement of the mean field approximation theorem in the mean field
theory of Markov processes particularly targets the behaviour of population
processes with an unbounded number of agents. However, in most real-world
engineering applications one faces the problem of analysing middle-sized
systems in which the number of agents is bounded. In this paper we build on
previous work in this area and introduce the mean drift. We present the concept
of population processes and the conditions under which the approximation
theorems apply, and then show how the mean drift is derived through a
systematic application of the propagation of chaos. We then use the mean drift
to construct a new set of ordinary differential equations which address the
analysis of population processes with an arbitrary size
Rectification of thermal fluctuations in ideal gases
We calculate the systematic average speed of the adiabatic piston and a
thermal Brownian motor, introduced in [Van den Broeck, Kawai and Meurs,
\emph{Microscopic analysis of a thermal Brownian motor}, to appear in Phys.
Rev. Lett.], by an expansion of the Boltzmann equation and compare with the
exact numerical solution.Comment: 18 page
Shift-Symmetric Configurations in Two-Dimensional Cellular Automata: Irreversibility, Insolvability, and Enumeration
The search for symmetry as an unusual yet profoundly appealing phenomenon,
and the origin of regular, repeating configuration patterns have long been a
central focus of complexity science and physics. To better grasp and understand
symmetry of configurations in decentralized toroidal architectures, we employ
group-theoretic methods, which allow us to identify and enumerate these inputs,
and argue about irreversible system behaviors with undesired effects on many
computational problems. The concept of so-called configuration shift-symmetry
is applied to two-dimensional cellular automata as an ideal model of
computation. Regardless of the transition function, the results show the
universal insolvability of crucial distributed tasks, such as leader election,
pattern recognition, hashing, and encryption. By using compact enumeration
formulas and bounding the number of shift-symmetric configurations for a given
lattice size, we efficiently calculate the probability of a configuration being
shift-symmetric for a uniform or density-uniform distribution. Further, we
devise an algorithm detecting the presence of shift-symmetry in a
configuration.
Given the resource constraints, the enumeration and probability formulas can
directly help to lower the minimal expected error and provide recommendations
for system's size and initialization. Besides cellular automata, the
shift-symmetry analysis can be used to study the non-linear behavior in various
synchronous rule-based systems that include inference engines, Boolean
networks, neural networks, and systolic arrays.Comment: 22 pages, 9 figures, 2 appendice
Spontaneous Resonances and the Coherent States of the Queuing Networks
We present an example of a highly connected closed network of servers, where
the time correlations do not go to zero in the infinite volume limit. This
phenomenon is similar to the continuous symmetry breaking at low temperatures
in statistical mechanics. The role of the inverse temperature is played by the
average load.Comment: 3 figures added, small correction
Single-crossover dynamics: finite versus infinite populations
Populations evolving under the joint influence of recombination and
resampling (traditionally known as genetic drift) are investigated. First, we
summarise and adapt a deterministic approach, as valid for infinite
populations, which assumes continuous time and single crossover events. The
corresponding nonlinear system of differential equations permits a closed
solution, both in terms of the type frequencies and via linkage disequilibria
of all orders. To include stochastic effects, we then consider the
corresponding finite-population model, the Moran model with single crossovers,
and examine it both analytically and by means of simulations. Particular
emphasis is on the connection with the deterministic solution. If there is only
recombination and every pair of recombined offspring replaces their pair of
parents (i.e., there is no resampling), then the {\em expected} type
frequencies in the finite population, of arbitrary size, equal the type
frequencies in the infinite population. If resampling is included, the
stochastic process converges, in the infinite-population limit, to the
deterministic dynamics, which turns out to be a good approximation already for
populations of moderate size.Comment: 21 pages, 4 figure
Large Deviations Principle for a Large Class of One-Dimensional Markov Processes
We study the large deviations principle for one dimensional, continuous,
homogeneous, strong Markov processes that do not necessarily behave locally as
a Wiener process. Any strong Markov process in that is
continuous with probability one, under some minimal regularity conditions, is
governed by a generalized elliptic operator , where and are
two strictly increasing functions, is right continuous and is
continuous. In this paper, we study large deviations principle for Markov
processes whose infinitesimal generator is where
. This result generalizes the classical large deviations
results for a large class of one dimensional "classical" stochastic processes.
Moreover, we consider reaction-diffusion equations governed by a generalized
operator . We apply our results to the problem of wave front
propagation for these type of reaction-diffusion equations.Comment: 23 page
Analytic Metaphysics versus Naturalized Metaphysics: The Relevance of Applied Ontology
The relevance of analytic metaphysics has come under criticism: Ladyman & Ross, for instance, have suggested do discontinue the field. French & McKenzie have argued in defense of analytic metaphysics that it develops tools that could turn out to be useful for philosophy of physics. In this article, we show first that this heuristic defense of metaphysics can be extended to the scientific field of applied ontology, which uses constructs from analytic metaphysics. Second, we elaborate on a parallel by French & McKenzie between mathematics and metaphysics to show that the whole field of analytic metaphysics, being useful not only for philosophy but also for science, should continue to exist as a largely autonomous field
The Euler-Maruyama approximation for the absorption time of the CEV diffusion
A standard convergence analysis of the simulation schemes for the hitting
times of diffusions typically requires non-degeneracy of their coefficients on
the boundary, which excludes the possibility of absorption. In this paper we
consider the CEV diffusion from the mathematical finance and show how a weakly
consistent approximation for the absorption time can be constructed, using the
Euler-Maruyama scheme
- …
