2,072 research outputs found

    On Exceptional Times for generalized Fleming-Viot Processes with Mutations

    Full text link
    If Y\mathbf Y is a standard Fleming-Viot process with constant mutation rate (in the infinitely many sites model) then it is well known that for each t>0t>0 the measure Yt\mathbf Y_t is purely atomic with infinitely many atoms. However, Schmuland proved that there is a critical value for the mutation rate under which almost surely there are exceptional times at which Y\mathbf Y is a finite sum of weighted Dirac masses. In the present work we discuss the existence of such exceptional times for the generalized Fleming-Viot processes. In the case of Beta-Fleming-Viot processes with index α]1,2[\alpha\in\,]1,2[ we show that - irrespectively of the mutation rate and α\alpha - the number of atoms is almost surely always infinite. The proof combines a Pitman-Yor type representation with a disintegration formula, Lamperti's transformation for self-similar processes and covering results for Poisson point processes

    The Mean Drift: Tailoring the Mean Field Theory of Markov Processes for Real-World Applications

    Full text link
    The statement of the mean field approximation theorem in the mean field theory of Markov processes particularly targets the behaviour of population processes with an unbounded number of agents. However, in most real-world engineering applications one faces the problem of analysing middle-sized systems in which the number of agents is bounded. In this paper we build on previous work in this area and introduce the mean drift. We present the concept of population processes and the conditions under which the approximation theorems apply, and then show how the mean drift is derived through a systematic application of the propagation of chaos. We then use the mean drift to construct a new set of ordinary differential equations which address the analysis of population processes with an arbitrary size

    Rectification of thermal fluctuations in ideal gases

    Get PDF
    We calculate the systematic average speed of the adiabatic piston and a thermal Brownian motor, introduced in [Van den Broeck, Kawai and Meurs, \emph{Microscopic analysis of a thermal Brownian motor}, to appear in Phys. Rev. Lett.], by an expansion of the Boltzmann equation and compare with the exact numerical solution.Comment: 18 page

    Shift-Symmetric Configurations in Two-Dimensional Cellular Automata: Irreversibility, Insolvability, and Enumeration

    Full text link
    The search for symmetry as an unusual yet profoundly appealing phenomenon, and the origin of regular, repeating configuration patterns have long been a central focus of complexity science and physics. To better grasp and understand symmetry of configurations in decentralized toroidal architectures, we employ group-theoretic methods, which allow us to identify and enumerate these inputs, and argue about irreversible system behaviors with undesired effects on many computational problems. The concept of so-called configuration shift-symmetry is applied to two-dimensional cellular automata as an ideal model of computation. Regardless of the transition function, the results show the universal insolvability of crucial distributed tasks, such as leader election, pattern recognition, hashing, and encryption. By using compact enumeration formulas and bounding the number of shift-symmetric configurations for a given lattice size, we efficiently calculate the probability of a configuration being shift-symmetric for a uniform or density-uniform distribution. Further, we devise an algorithm detecting the presence of shift-symmetry in a configuration. Given the resource constraints, the enumeration and probability formulas can directly help to lower the minimal expected error and provide recommendations for system's size and initialization. Besides cellular automata, the shift-symmetry analysis can be used to study the non-linear behavior in various synchronous rule-based systems that include inference engines, Boolean networks, neural networks, and systolic arrays.Comment: 22 pages, 9 figures, 2 appendice

    Spontaneous Resonances and the Coherent States of the Queuing Networks

    Full text link
    We present an example of a highly connected closed network of servers, where the time correlations do not go to zero in the infinite volume limit. This phenomenon is similar to the continuous symmetry breaking at low temperatures in statistical mechanics. The role of the inverse temperature is played by the average load.Comment: 3 figures added, small correction

    Single-crossover dynamics: finite versus infinite populations

    Full text link
    Populations evolving under the joint influence of recombination and resampling (traditionally known as genetic drift) are investigated. First, we summarise and adapt a deterministic approach, as valid for infinite populations, which assumes continuous time and single crossover events. The corresponding nonlinear system of differential equations permits a closed solution, both in terms of the type frequencies and via linkage disequilibria of all orders. To include stochastic effects, we then consider the corresponding finite-population model, the Moran model with single crossovers, and examine it both analytically and by means of simulations. Particular emphasis is on the connection with the deterministic solution. If there is only recombination and every pair of recombined offspring replaces their pair of parents (i.e., there is no resampling), then the {\em expected} type frequencies in the finite population, of arbitrary size, equal the type frequencies in the infinite population. If resampling is included, the stochastic process converges, in the infinite-population limit, to the deterministic dynamics, which turns out to be a good approximation already for populations of moderate size.Comment: 21 pages, 4 figure

    Large Deviations Principle for a Large Class of One-Dimensional Markov Processes

    Full text link
    We study the large deviations principle for one dimensional, continuous, homogeneous, strong Markov processes that do not necessarily behave locally as a Wiener process. Any strong Markov process XtX_{t} in R\mathbb{R} that is continuous with probability one, under some minimal regularity conditions, is governed by a generalized elliptic operator DvDuD_{v}D_{u}, where vv and uu are two strictly increasing functions, vv is right continuous and uu is continuous. In this paper, we study large deviations principle for Markov processes whose infinitesimal generator is ϵDvDu\epsilon D_{v}D_{u} where 0<ϵ10<\epsilon\ll 1. This result generalizes the classical large deviations results for a large class of one dimensional "classical" stochastic processes. Moreover, we consider reaction-diffusion equations governed by a generalized operator DvDuD_{v}D_{u}. We apply our results to the problem of wave front propagation for these type of reaction-diffusion equations.Comment: 23 page

    Analytic Metaphysics versus Naturalized Metaphysics: The Relevance of Applied Ontology

    Get PDF
    The relevance of analytic metaphysics has come under criticism: Ladyman & Ross, for instance, have suggested do discontinue the field. French & McKenzie have argued in defense of analytic metaphysics that it develops tools that could turn out to be useful for philosophy of physics. In this article, we show first that this heuristic defense of metaphysics can be extended to the scientific field of applied ontology, which uses constructs from analytic metaphysics. Second, we elaborate on a parallel by French & McKenzie between mathematics and metaphysics to show that the whole field of analytic metaphysics, being useful not only for philosophy but also for science, should continue to exist as a largely autonomous field

    The Euler-Maruyama approximation for the absorption time of the CEV diffusion

    Full text link
    A standard convergence analysis of the simulation schemes for the hitting times of diffusions typically requires non-degeneracy of their coefficients on the boundary, which excludes the possibility of absorption. In this paper we consider the CEV diffusion from the mathematical finance and show how a weakly consistent approximation for the absorption time can be constructed, using the Euler-Maruyama scheme
    corecore