944 research outputs found

    Acoustic Scattering from Mud Volcanoes and Carbonate Mounts

    Get PDF
    Submarine mud volcanoes occur in many parts of the world’s oceans and form an aperture for gas and fluidized mud emission from within the earth’s crust. Their characteristics are of considerable interest to the geology, geophysics, geochemistry, and underwater acoustics communities. For the latter, mud volcanoes are of interest in part because they pose a potential source of clutter for active sonar. Close-range (single-interaction) scattering measurements from a mud volcano in the Straits of Sicily show scattering10–15dB above the background. Three hypotheses were examined concerning the scattering mechanism: (1) gas entrained in sediment at/near mud volcano, (2) gas bubbles and/or particulates (emitted) in the water column, (3) the carbonate bio-construction covering the mud volcano edifice. The experimental evidence, including visual, acoustic, and nonacoustic sensors, rules out the second hypothesis (at least during the observation time) and suggests that, for this particular mud volcano the dominant mechanism is associated with carbonate chimneys on the mud volcano. In terms of scattering levels, target strengths of 4–14dB were observed from 800to3600Hz for a monostatic geometry with grazing angles of 3–5°. Similar target strengths were measured for vertically bistatic paths with incident and scattered grazing angles of 3–5° and 33–50°, respectively

    Trace-gas metabolic versatility of the facultative methanotroph Methylocella silvestris

    Get PDF
    The climate-active gas methane is generated both by biological processes and by thermogenic decomposition of fossil organic material, which forms methane and short-chain alkanes, principally ethane, propane and butane1, 2. In addition to natural sources, environments are exposed to anthropogenic inputs of all these gases from oil and gas extraction and distribution. The gases provide carbon and/or energy for a diverse range of microorganisms that can metabolize them in both anoxic3 and oxic zones. Aerobic methanotrophs, which can assimilate methane, have been considered to be entirely distinct from utilizers of short-chain alkanes, and studies of environments exposed to mixtures of methane and multi-carbon alkanes have assumed that disparate groups of microorganisms are responsible for the metabolism of these gases. Here we describe the mechanism by which a single bacterial strain, Methylocella silvestris, can use methane or propane as a carbon and energy source, documenting a methanotroph that can utilize a short-chain alkane as an alternative to methane. Furthermore, during growth on a mixture of these gases, efficient consumption of both gases occurred at the same time. Two soluble di-iron centre monooxygenase (SDIMO) gene clusters were identified and were found to be differentially expressed during bacterial growth on these gases, although both were required for efficient propane utilization. This report of a methanotroph expressing an additional SDIMO that seems to be uniquely involved in short-chain alkane metabolism suggests that such metabolic flexibility may be important in many environments where methane and short-chain alkanes co-occur

    Methane Seepage on Mars: Where to Look and Why

    Get PDF
    Methane on Mars is a topic of special interest because of its potential association with microbial life. The variable detections of methane by the Curiosity rover, orbiters, and terrestrial telescopes, coupled with methane's short lifetime in the martian atmosphere, may imply an active gas source in the planet's subsurface, with migration and surface emission processes similar to those known on Earth as “gas seepage.” Here, we review the variety of subsurface processes that could result in methane seepage on Mars. Such methane could originate from abiotic chemical reactions, thermogenic alteration of abiotic or biotic organic matter, and ancient or extant microbial metabolism. These processes can occur over a wide range of temperatures, in both sedimentary and igneous rocks, and together they enhance the possibility that significant amounts of methane could have formed on early Mars. Methane seepage to the surface would occur preferentially along faults and fractures, through focused macro-seeps and/or diffuse microseepage exhalations. Our work highlights the types of features on Mars that could be associated with methane release, including mud-volcano-like mounds in Acidalia or Utopia; proposed ancient springs in Gusev Crater, Arabia Terra, and Valles Marineris; and rims of large impact craters. These could have been locations of past macro-seeps and may still emit methane today. Microseepage could occur through faults along the dichotomy or fractures such as those at Nili Fossae, Cerberus Fossae, the Argyre impact, and those produced in serpentinized rocks. Martian microseepage would be extremely difficult to detect remotely yet could constitute a significant gas source. We emphasize that the most definitive detection of methane seepage from different release candidates would be best provided by measurements performed in the ground or at the ground-atmosphere interface by landers or rovers and that the technology for such detection is currently available

    Widespread abiotic methane in chromitites

    Get PDF
    Recurring discoveries of abiotic methane in gas seeps and springs in ophiolites and peridotite massifs worldwide raised the question of where, in which rocks, methane was generated. Answers will impact the theories on life origin related to serpentinization of ultramafic rocks, and the origin of methane on rocky planets. Here we document, through molecular and isotopic analyses of gas liberated by rock crushing, that among the several mafic and ultramafic rocks composing classic ophiolites in Greece, i.e., serpentinite, peridotite, chromitite, gabbro, rodingite and basalt, only chromitites, characterized by high concentrations of chromium and ruthenium, host considerable amounts of 13C-enriched methane, hydrogen and heavier hydrocarbons with inverse isotopic trend, which is typical of abiotic gas origin. Raman analyses are consistent with methane being occluded in widespread microfractures and porous serpentine- or chlorite-filled veins. Chromium and ruthenium may be key metal catalysts for methane production via Sabatier reaction. Chromitites may represent source rocks of abiotic methane on Earth and, potentially, on Mars

    Methane concentration and isotopic composition (d13C-CH4) in the Nerja Cave system (South Spain)

    Get PDF
    Air in underground caves often has methane (CH4) concentrations below the atmospheric level, due to methanotrophic or other unkown CH4 consuming processes. Caves are thus considered a potential sink for atmospheric methane. If globally important, this underground CH4 oxidation should be taken into account in the atmospheric methane budget, in addition to the known soil methanotrophy and tropospheric/stratospheric sinks. A large set of data is however necessary to understand how and how much methane from external atmospheric air is consumed in the caves. While methane concentration data are available for several caves worldwide, its isotopic composition and variations in space and time are poorly documented. We measured methane concentration and stable C isotope composition (d13C) in the Nerja cave (Southern Spain) air during two surveys in March and April 2015. CH4 concentration decreases progressively from the more external cave rooms, with atmospheric levels of 1.9 ppmv, to the more internal and isolated rooms down to 0.5 ppmv. d13C increases correspondingly from -47 h to -41 h (VPDB). CH4 is systematically 13C-enriched (d13C > -45 permil) in areas of the cave where the concentration is below 1.4 ppmv. This combination of concentration decrease and 13C-enrichment towards the more internal and isolated zones of the cave confirms the importance of CH4 oxidation, likely driven by methanotrophic bacteria. Further data, including stable H isotope composition of subatmospheric CH4 concentrations, CO2 and microbial analyses, shall be acquired over time to assess the actual role of methanotrophic bacteria and seasonal controls in the CH4 consumption process.Universidad de Málaga. Campus de Excelencia Internacional Andalucía Tech

    Geologic carbon sources may confound ecosystem carbon balance estimates: Evidence from a semiarid steppe in the southeast of Spain

    Get PDF
    At a semiarid steppe site located in the SE of Spain, relatively large CO2 emissions were measured that could not be attributed to the ecosystem activity alone. Since the study site was located in a tectonically active area, it was hypothesized that a part of the measured CO2 was of geologic origin. This investigation included a survey of soil CO2 efflux, together with carbon isotope analyses of the CO2 in the soil atmosphere, soil CO2 efflux (ie, Keeling plots), groundwater and local thermal springs. These measurements confirmed the ... Articoli in Schola
    corecore