1,145 research outputs found
Synthesis of Cell-Adhesive Anisotropic Multifunctional Particles by Stop Flow Lithography and Streptavidin–Biotin Interactions
Cell-adhesive particles are of significant interest in biotechnology, the bioengineering of complex tissues, and biomedical research. Their applications range from platforms to increase the efficiency of anchorage-dependent cell culture to building blocks to loading cells in heterogeneous structures to clonal-population growth monitoring to cell sorting. Although useful, currently available cell-adhesive particles can accommodate only homogeneous cell culture. Here, we report the design of anisotropic hydrogel microparticles with tunable cell-adhesive regions as first step toward micropatterned cell cultures on particles. We employed stop flow lithography (SFL), the coupling reaction between amine and N-hydroxysuccinimide (NHS) and streptavidin–biotin chemistry to adjust the localization of conjugated collagen and poly-l-lysine on the surface of microscale particles. Using the new particles, we demonstrate the attachment and formation of tight junctions between brain endothelial cells. We also demonstrate the geometric patterning of breast cancer cells on particles with heterogeneous collagen coatings. This new approach avoids the exposure of cells to potentially toxic photoinitiators and ultraviolet light and decouples in time the microparticle synthesis and the cell culture steps to take advantage of the most recent advances in cell patterning available for traditional culture substrates.National Institutes of Health (U.S.) (GM092804)National Science Foundation (U.S.) (CMMI-1120724 and DMR-1006147)Samsung Scholarship Foundatio
Improved field uniformity in EMC chamber for 6G communication
This paper shows electromagnetic field uniformity in an electromagnetic compatibility (EMC) chamber that is used as a test facility for measuring electromagnetic interference and radiated immunity of 6G communication systems. While not defined yet, 6G radio frequency will work in the wavelength ranges above 95 GHz. With this reason, this paper designed a schroeder-type quadratic residue diffuser for 95 GHz to generate a uniform electromagnetic field in the EMC chamber and studied the field uniformity characteristics in it. To analyze the distribution of electromagnetic fields inside the EMC chamber, finite-difference time-domain (FDTD) numerical analysis method is used. The simulation results show that the EMC chamber with this diffuser satisfies the requirements of international standards and has improved the field uniformity in the chamber
Security system using mobile image processing and color recognition for the visually impaired
Voice technology at traffic lights or bus stops is emerging for the independent daily life of the blind, but there are few technologies that efficiently help the blind, such as knowing the color of clothes to wear before going out or entering the bus stop at once. To support such difficulties, this paper proposes a method that can be helped by using a smartphone application to distinguish the color of outdoor clothes. Smartphones, which are hardware-based for applications, have the advantage of predictable results, ease of transportation, independence from direct use, and personal support for the blind through various applications. However, there are very few applications to help the blind. This paper proposes the development of an application that can efficiently and independently recognize colors and images at anytime, anywhere by scanning images using smartphone cameras and converting them into bitmap images. Finally, the effects that can be expected through the application proposed in this study are described
Liquid State Anomalies for the Stell-Hemmer Core-Softened Potential
We study the Stell-Hemmer potential using both analytic (exact and
approximate ) solutions and numerical simulations. We observe in the
liquid phase an anomalous decrease in specific volume and isothermal
compressibility upon heating, and an anomalous increase in the diffusion
coefficient with pressure. We relate the anomalies to the existence of two
different local structures in the liquid phase. Our results are consistent with
the possibility of a low temperature/high pressure liquid-liquid phase
transition.Comment: 4 pages in one gzipped ps file including 11 figures; One RevTex and
11 gzipped eps figure
Portfolio Rebalancing and the Turn‐of‐the‐Year Effect
This paper finds that, for the 1935–1986 period, the market's risk‐return relation does not have a January seasonal. The findings differ from those of other studies due to the use of value‐weighted, rather than equally weighted, portfolios. Inferences are sensitive to the weighting procedure because of the small‐firm return patterns in January. In particular, even in those Januaries for which the market return is negative, small‐firm returns are positive, and they are more positive the higher is beta. This is consistent with the portfolio rebalancing explanation of the turn‐of‐the‐year effect.Peer Reviewedhttp://deepblue.lib.umich.edu/bitstream/2027.42/91172/1/j.1540-6261.1989.tb02409.x.pd
Robust optical delay lines via topological protection
Phenomena associated with topological properties of physical systems are
naturally robust against perturbations. This robustness is exemplified by
quantized conductance and edge state transport in the quantum Hall and quantum
spin Hall effects. Here we show how exploiting topological properties of
optical systems can be used to implement robust photonic devices. We
demonstrate how quantum spin Hall Hamiltonians can be created with linear
optical elements using a network of coupled resonator optical waveguides (CROW)
in two dimensions. We find that key features of quantum Hall systems, including
the characteristic Hofstadter butterfly and robust edge state transport, can be
obtained in such systems. As a specific application, we show that the
topological protection can be used to dramatically improve the performance of
optical delay lines and to overcome limitations related to disorder in photonic
technologies.Comment: 9 pages, 5 figures + 12 pages of supplementary informatio
Thermodynamic and structural aspects of the potential energy surface of simulated water
Relations between the thermodynamics and dynamics of supercooled liquids
approaching a glass transition have been proposed over many years. The
potential energy surface of model liquids has been increasingly studied since
it provides a connection between the configurational component of the partition
function on one hand, and the system dynamics on the other. This connection is
most obvious at low temperatures, where the motion of the system can be
partitioned into vibrations within a basin of attraction and infrequent
inter-basin transitions. In this work, we present a description of the
potential energy surface properties of supercooled liquid water. The dynamics
of this model has been studied in great details in the last years.
Specifically, we locate the minima sampled by the liquid by ``quenches'' from
equilibrium configurations generated via molecular dynamics simulations. We
calculate the temperature and density dependence of the basin energy,
degeneracy, and shape. The temperature dependence of the energy of the minima
is qualitatively similar to simple liquids, but has anomalous density
dependence. The unusual density dependence is also reflected in the
configurational entropy, the thermodynamic measure of degeneracy. Finally, we
study the structure of simulated water at the minima, which provides insight on
the progressive tetrahedral ordering of the liquid on cooling
Water-like anomalies for core-softened models of fluids: One dimension
We use a one-dimensional (1d) core-softened potential to develop a physical
picture for some of the anomalies present in liquid water. The core-softened
potential mimics the effect of hydrogen bonding. The interest in the 1d system
stems from the facts that closed-form results are possible and that the
qualitative behavior in 1d is reproduced in the liquid phase for higher
dimensions. We discuss the relation between the shape of the potential and the
density anomaly, and we study the entropy anomaly resulting from the density
anomaly. We find that certain forms of the two-step square well potential lead
to the existence at T=0 of a low-density phase favored at low pressures and of
a high-density phase favored at high pressures, and to the appearance of a
point at a positive pressure, which is the analog of the T=0 ``critical
point'' in the Ising model. The existence of point leads to anomalous
behavior of the isothermal compressibility and the isobaric specific heat
.Comment: 22 pages, 7 figure
Anyonic interferometry and protected memories in atomic spin lattices
Strongly correlated quantum systems can exhibit exotic behavior called
topological order which is characterized by non-local correlations that depend
on the system topology. Such systems can exhibit remarkable phenomena such as
quasi-particles with anyonic statistics and have been proposed as candidates
for naturally fault-tolerant quantum computation. Despite these remarkable
properties, anyons have never been observed in nature directly. Here we
describe how to unambiguously detect and characterize such states in recently
proposed spin lattice realizations using ultra-cold atoms or molecules trapped
in an optical lattice. We propose an experimentally feasible technique to
access non-local degrees of freedom by performing global operations on trapped
spins mediated by an optical cavity mode. We show how to reliably read and
write topologically protected quantum memory using an atomic or photonic qubit.
Furthermore, our technique can be used to probe statistics and dynamics of
anyonic excitations.Comment: 14 pages, 6 figure
- …
