256 research outputs found
Recommended from our members
An Evolutionary and Mechanistic Perspective on Dietary Carbohydrate Restriction in Cancer Prevention
The confluence of basic cell biochemistry, epidemiological and anthropologic evidence points to high dietary carbohydrate and the associated disruption of the glucose-insulin axis as causes of the current increase in metabolic disorders, metabolic syndrome, hypertension and cardiovascular disease. This hyperinsulinemic state likely contributes, as well, to an increased mutagenic microenvironment, with increased risk for cancer. This critical review discusses these risks in their historical and evolutionary context. The evidence supports the benefits of lowering the glycemic load of the diet as a preventive measure against the development of cancer
Recommended from our members
Menopause from an integrative historical and evolutionary perspective
Can inhibiting insulin/IGF signaling with dietary carbohydrate restriction play a role in treatment/prevention of cancers?
Thermodynamics of weight loss diets
BACKGROUND: It is commonly held that "a calorie is a calorie", i.e. that diets of equal caloric content will result in identical weight change independent of macronutrient composition, and appeal is frequently made to the laws of thermodynamics. We have previously shown that thermodynamics does not support such a view and that diets of different macronutrient content may be expected to induce different changes in body mass. Low carbohydrate diets in particular have claimed a "metabolic advantage" meaning more weight loss than in isocaloric diets of higher carbohydrate content. In this review, for pedagogic clarity, we reframe the theoretical discussion to directly link thermodynamic inefficiency to weight change. The problem in outline: Is metabolic advantage theoretically possible? If so, what biochemical mechanisms might plausibly explain it? Finally, what experimental evidence exists to determine whether it does or does not occur? RESULTS: Reduced thermodynamic efficiency will result in increased weight loss. The laws of thermodynamics are silent on the existence of variable thermodynamic efficiency in metabolic processes. Therefore such variability is permitted and can be related to differences in weight lost. The existence of variable efficiency and metabolic advantage is therefore an empiric question rather than a theoretical one, confirmed by many experimental isocaloric studies, pending a properly performed meta-analysis. Mechanisms are as yet unknown, but plausible mechanisms at the metabolic level are proposed. CONCLUSIONS: Variable thermodynamic efficiency due to dietary manipulation is permitted by physical laws, is supported by much experimental data, and may be reasonably explained by plausible mechanisms
Intra-molecular coupling as a mechanism for a liquid-liquid phase transition
We study a model for water with a tunable intra-molecular interaction
, using mean field theory and off-lattice Monte Carlo simulations.
For all , the model displays a temperature of maximum
density.For a finite intra-molecular interaction ,our
calculations support the presence of a liquid-liquid phase transition with a
possible liquid-liquid critical point for water, likely pre-empted by
inevitable freezing. For J=0 the liquid-liquid critical point disappears at
T=0.Comment: 8 pages, 4 figure
Acetoacetate reduces growth and ATP concentration in cancer cell lines which over-express uncoupling protein 2
A pilot safety-feasibility dietary trial targeting insulin inhibition in ten patients with advanced cancer
Estimating the global conservation status of more than 15,000 Amazonian tree species
Estimates of extinction risk for Amazonian plant and animal species are rare and not often incorporated into land-use policy and conservation planning. We overlay spatial distribution models with historical and projected deforestation to show that at least 36% and up to 57% of all Amazonian tree species are likely to qualify as globally threatened under International Union for Conservation of Nature (IUCN) Red List criteria. If confirmed, these results would increase the number of threatened plant species on Earth by 22%. We show that the trends observed in Amazonia apply to trees throughout the tropics, and we predict thatmost of the world’s >40,000 tropical tree species now qualify as globally threatened. A gap analysis suggests that existing Amazonian protected areas and indigenous territories will protect viable populations of most threatened species if these areas suffer no further degradation, highlighting the key roles that protected areas, indigenous peoples, and improved governance can play in preventing large-scale extinctions in the tropics in this century
- …
