895 research outputs found

    The impact of demonstrations on farmers' attitudes toward fertilizer

    Get PDF

    The Construction of Innovativeness Scales

    Get PDF

    BOOK REVIEW

    Get PDF

    Scaling in Late Stage Spinodal Decomposition with Quenched Disorder

    Full text link
    We study the late stages of spinodal decomposition in a Ginzburg-Landau mean field model with quenched disorder. Random spatial dependence in the coupling constants is introduced to model the quenched disorder. The effect of the disorder on the scaling of the structure factor and on the domain growth is investigated in both the zero temperature limit and at finite temperature. In particular, we find that at zero temperature the domain size, R(t)R(t), scales with the amplitude, AA, of the quenched disorder as R(t)=Aβf(t/Aγ)R(t) = A^{-\beta} f(t/A^{-\gamma}) with β1.0\beta \simeq 1.0 and γ3.0\gamma \simeq 3.0 in two dimensions. We show that β/γ=α\beta/\gamma = \alpha, where α\alpha is the Lifshitz-Slyosov exponent. At finite temperature, this simple scaling is not observed and we suggest that the scaling also depends on temperature and AA. We discuss these results in the context of Monte Carlo and cell dynamical models for phase separation in systems with quenched disorder, and propose that in a Monte Carlo simulation the concentration of impurities, cc, is related to AA by Ac1/dA \sim c^{1/d}.Comment: RevTex manuscript 5 pages and 5 figures (obtained upon request via email [email protected]

    How We Got from There to Here: A Story of Real Analysis

    Get PDF
    The typical introductory real analysis text starts with an analysis of the real number system and uses this to develop the definition of a limit, which is then used as a foundation for the definitions encountered thereafter. While this is certainly a reasonable approach from a logical point of view, it is not how the subject evolved, nor is it necessarily the best way to introduce students to the rigorous but highly non-intuitive definitions and proofs found in analysis. This book proposes that an effective way to motivate these definitions is to tell one of the stories (there are many) of the historical development of the subject, from its intuitive beginnings to modern rigor. The definitions and techniques are motivated by the actual difficulties encountered by the intuitive approach and are presented in their historical context. However, this is not a history of analysis book. It is an introductory analysis textbook, presented through the lens of history. As such, it does not simply insert historical snippets to supplement the material. The history is an integral part of the topic, and students are asked to solve problems that occur as they arise in their historical context. This book covers the major topics typically addressed in an introductory undergraduate course in real analysis in their historical order. Written with the student in mind, the book provides guidance for transforming an intuitive understanding into rigorous mathematical arguments. For example, in addition to more traditional problems, major theorems are often stated and a proof is outlined. The student is then asked to fill in the missing details as a homework problem.https://knightscholar.geneseo.edu/oer-ost/1019/thumbnail.jp
    corecore