389 research outputs found
Quantum magnetism with multicomponent polar molecules in an optical lattice
We consider bosonic dipolar molecules in an optical lattice prepared in a
mixture of different rotational states. The 1/r^3 interaction between molecules
for this system is produced by exchanging a quantum of angular momentum between
two molecules. We show that the Mott states of such systems have a large
variety of non-trivial spin orderings including a state with ordering wave
vector that can be changed by tilting the lattice. As the Mott insulating phase
is melted, we also describe several exotic superfluid phases that will occur
CRNN: a joint neural network for redundancy detection
This article proposes a novel framework for detecting redundancy in supervised sentence categorisation. Unlike traditional singleton neural network, our model incorporates character-aware convolutional neural network (Char-CNN) with character-aware recurrent neural network (Char-RNN) to form a convolutional recurrent neural network (CRNN). Our model benefits from Char-CNN in that only salient features are selected and fed into the integrated Char-RNN. Char-RNN effectively learns long sequence semantics via sophisticated update mechanism. We compare our framework against the state-of-the-art text classification algorithms on four popular benchmarking corpus. For instance, our model achieves competing precision rate, recall ratio, and F1 score on the Google-news data-set. For twenty-news-groups data stream, our algorithm obtains the optimum on precision rate, recall ratio, and F1 score. For Brown Corpus, our framework obtains the best F1 score and almost equivalent precision rate and recall ratio over the top competitor. For the question classification collection, CRNN produces the optimal recall rate and F1 score and comparable precision rate. We also analyse three different RNN hidden recurrent cells’ impact on performance and their runtime efficiency. We observe that MGU achieves the optimal runtime and comparable performance against GRU and LSTM. For TFIDF based algorithms, we experiment with word2vec, GloVe, and sent2vec embeddings and report their performance differences
Characterization of a novel type of HIV-1 particle assembly inhibitor using a quantitative Luciferase-Vpr packaging-based assay
The HIV-1 auxiliary protein Vpr and Vpr-fusion proteins can be copackaged with Gag precursor (Pr55Gag) into virions or membrane-enveloped virus-like particles (VLP). Taking advantage of this property, we developed a simple and sensitive method to evaluate potential inhibitors of HIV-1 assembly in a living cell system. Two proteins were coexpressed in recombinant baculovirus-infected Sf9 cells, Pr55Gag, which formed the VLP backbone, and luciferase fused to the N-terminus of Vpr (LucVpr). VLP-encapsidated LucVpr retained the enzymatic activity of free luciferase. The levels of luciferase activity present in the pelletable fraction recovered from the culture medium correlated with the amounts of extracellular VLP released by Sf9 cells assayed by conventional immunological methods. Our luciferase-based assay was then applied to the characterization of betulinic acid (BA) derivatives that differed from the leader compound PA-457 (or DSB) by their substituant on carbon-28. The beta-alanine-conjugated and lysine-conjugated DSB could not be evaluated for their antiviral potentials due to their high cytotoxicity, whereas two other compounds with a lesser cytotoxicity, glycine-conjugated and ε-NH-Boc-lysine-conjugated DSB, exerted a dose-dependent negative effect on VLP assembly and budding. A fifth compound with a low cytotoxicity, EP-39 (ethylene diamine-conjugated DSB), showed a novel type of antiviral effect. EP-39 provoked an aberrant assembly of VLP, resulting in nonenveloped, morula-like particles of 100-nm in diameter. Each morula was composed of nanoparticle subunits of 20-nm in diameter, which possibly mimicked transient intermediates of the HIV-1 Gag assembly process. Chemical cross-linking in situ suggested that EP-39 favored the formation or/and persistence of Pr55Gag trimers over other oligomeric species. EP-39 showed a novel type of negative effect on HIV-1 assembly, targeting the Pr55Gag oligomerisation. The biological effect of EP-39 underlined the critical role of the nature of the side chain at position 28 of BA derivatives in their anti-HIV-1 activity
An improved game-theoretic approach to uncover overlapping communities
How can we uncover overlapping communities from complex networks to understand the inherent structures and functions? Chen et al. firstly proposed a community game (Game) to study this problem, and the overlapping communities have been discovered when the game is convergent. It is based on the assumption that each vertex of the underlying network is a rational game player to maximize its utility. In this paper, we investigate how similar vertices affect the formation of community game. The Adamic–Adar Index (AA Index) has been employed to define the new utility function. This novel method has been evaluated on both synthetic and real-world networks. Experimental study shows that it has significant improvement of accuracy (from 4.8% to 37.6%) compared with the Game on 10 real networks. It is more efficient on Facebook networks (FN) and Amazon co-purchasing networks than on other networks. This result implicates that “friend circles of friends” of Facebook are valuable to understand the overlapping community division
Activists on board: Shareholder activists and their influence on firm strategic change
The prevalence of shareholder activism has resulted in the placement of activist-appointed directors onto the boards of firms. Extant research on this phenomenon has taken a rational approach in examining how such directors bring about change but has not accounted for the behavioral implications associated with their placement on boards. Building on theory involving alignment and legitimacy at the team level, this paper adopts a behavioral approach in theorizing how the placement of activist shareholders themselves as directors onto the boards of firms brings about firm change. The study finds that such activists lead to less firm change. Further, it finds support for the effects of demographic similarity between such activists and incumbent directors in causing change.
This article was published Open Access through the CCU Libraries Open Access Publishing Fund. The article was first published in Journal of General Management: https://doi.org/10.1177/0306307025133203
Casimir effect due to a single boundary as a manifestation of the Weyl problem
The Casimir self-energy of a boundary is ultraviolet-divergent. In many cases
the divergences can be eliminated by methods such as zeta-function
regularization or through physical arguments (ultraviolet transparency of the
boundary would provide a cutoff). Using the example of a massless scalar field
theory with a single Dirichlet boundary we explore the relationship between
such approaches, with the goal of better understanding the origin of the
divergences. We are guided by the insight due to Dowker and Kennedy (1978) and
Deutsch and Candelas (1979), that the divergences represent measurable effects
that can be interpreted with the aid of the theory of the asymptotic
distribution of eigenvalues of the Laplacian discussed by Weyl. In many cases
the Casimir self-energy is the sum of cutoff-dependent (Weyl) terms having
geometrical origin, and an "intrinsic" term that is independent of the cutoff.
The Weyl terms make a measurable contribution to the physical situation even
when regularization methods succeed in isolating the intrinsic part.
Regularization methods fail when the Weyl terms and intrinsic parts of the
Casimir effect cannot be clearly separated. Specifically, we demonstrate that
the Casimir self-energy of a smooth boundary in two dimensions is a sum of two
Weyl terms (exhibiting quadratic and logarithmic cutoff dependence), a
geometrical term that is independent of cutoff, and a non-geometrical intrinsic
term. As by-products we resolve the puzzle of the divergent Casimir force on a
ring and correct the sign of the coefficient of linear tension of the Dirichlet
line predicted in earlier treatments.Comment: 13 pages, 1 figure, minor changes to the text, extra references
added, version to be published in J. Phys.
Searching for physics beyond the Standard Model through the dipole interaction
The magnetic dipole interaction played a central role in the development of
QED, and continued in that role for the Standard Model. The muon anomalous
magnetic moment has served as a benchmark for models of new physics, and the
present experimental value is larger than the standard-model value by more than
three standard deviations. The electric dipole moment (EDM) violates parity
({}) and time-reversal ({}) symmetries, and in the context of the
theorem, the combination of charge conjugation and parity (). Since a new
source of {} violation outside of that observed in the and meson
systems is needed to help explain the baryon asymmetry of the universe,
searches for EDMs are being carried out worldwide on a number of systems. The
standard-model value of the EDM is immeasurably small, so any evidence for an
EDM would signify the observation of new physics. Unique opportunities exist
for EDM searches using polarized proton, deuteron or muon beams in storage
rings. This talk will provide an overview of the theory of dipole moments, and
the relevant experiments. The connection to the transition dipole moment that
could produce lepton flavor violating interactions such as is also mentioned.Comment: Invited Plenary talk at the 19th International Spin Physics
Symposium, Juelic
- …
