3,446 research outputs found
High resolution power spectra of daily Zurich sunspot numbers
High resolution power spectra of 77 years of Zurich daily sunspot numbers were computed using various lags and data point intervals. Major harmonic peaks of the approximately 124-month period showed up strongly as well as the 27-day solar rotational period
The Puzzle of the Flyby Anomaly
Close planetary flybys are frequently employed as a technique to place
spacecraft on extreme solar system trajectories that would otherwise require
much larger booster vehicles or may not even be feasible when relying solely on
chemical propulsion. The theoretical description of the flybys, referred to as
gravity assists, is well established. However, there seems to be a lack of
understanding of the physical processes occurring during these dynamical
events. Radio-metric tracking data received from a number of spacecraft that
experienced an Earth gravity assist indicate the presence of an unexpected
energy change that happened during the flyby and cannot be explained by the
standard methods of modern astrodynamics. This puzzling behavior of several
spacecraft has become known as the flyby anomaly. We present the summary of the
recent anomalous observations and discuss possible ways to resolve this puzzle.Comment: 6 pages, 1 figure. Accepted for publication by Space Science Review
A proof of Jarzynski's non-equilibrium work theorem for dynamical systems that conserve the canonical distribution
We present a derivation of the Jarzynski identity and the Crooks fluctuation
theorem for systems governed by deterministic dynamics that conserves the
canonical distribution such as Hamiltonian dynamics, Nose-Hoover dynamics,
Nose-Hoover chains and Gaussian isokinetic dynamics. The proof is based on a
relation between the heat absorbed by the system during the non-equilibrium
process and the Jacobian of the phase flow generated by the dynamics.Comment: 12 page
A Nonliearly Dispersive Fifth Order Integrable Equation and its Hierarchy
In this paper, we study the properties of a nonlinearly dispersive integrable
system of fifth order and its associated hierarchy. We describe a Lax
representation for such a system which leads to two infinite series of
conserved charges and two hierarchies of equations that share the same
conserved charges. We construct two compatible Hamiltonian structures as well
as their Casimir functionals. One of the structures has a single Casimir
functional while the other has two. This allows us to extend the flows into
negative order and clarifies the meaning of two different hierarchies of
positive flows. We study the behavior of these systems under a hodograph
transformation and show that they are related to the Kaup-Kupershmidt and the
Sawada-Kotera equations under appropriate Miura transformations. We also
discuss briefly some properties associated with the generalization of second,
third and fourth order Lax operators.Comment: 11 pages, LaTex, version to be published in Journal of Nonlinear
Mathematical Physics, has expanded discussio
Florística e fitossociologia em áreas de manejo de açaizais no estuário amazônico.
Este estudo teve como objetivo analisar a composição florística e a fitossociologia em três regiões do estuário amazônico em que é praticado o manejo de açaizais nativos. Nas regiões foram instaladas 30 parcelas de 0,5 ha e amostradas todas as espécies arbóreas e palmeiras com DAP ? 5 cm, mediu-se também a circunferência a altura do peito (CAP) com fita métrica de precisão de 1mm. Foram inventariados 10821 indivíduos, representados por 114 espécies, 96 gêneros e 33 famílias. As famílias mais representativas foram Arecaceae (9 espécies e 8007 indivíduos), seguida por Rubiaceae (2 espécies e 522 indivíduos),Myristicaceae (1 espécie e 268 indivíduos), Malvaceae (10 espécies e 264 indivíduos) e Euphorbiaceae (4 espécies e 247 indivíduos). Constatou-se que a riqueza nas áreas de manejo inventariadas permaneceu alta apesar da pressão antrópica que essas áreas sofrem
Estudo da vegetação matriz em ambiente de transição floresta-cerrado da RESEX Rio Cajarí, Amapá.
An AB effect without closing a loop
We discuss the consequences of the Aharonov-Bohm effect in setups involving
several charged particles, wherein none of the charged particles encloses a
closed loop around the magnetic flux. We show that in such setups, the AB phase
is encoded either in the relative phase of a bi-partite or multi-partite
entangled photons states, or alternatively, gives rise to an overall AB phase
that can be measured relative to another reference system. These setups involve
processes of annihilation or creation of electron/hole pairs. We discuss the
relevance of such effects in "vacuum Birefringence" in QED, and comment on
their connection to other known effects.Comment: 4 pages, 3 figure
Thermal conductance of thin film YIG determined using Bayesian statistics
Thin film YIG (YFeO) is a prototypical material for
experiments on thermally generated pure spin currents and the spin Seebeck
effect. The 3-omega method is an established technique to measure the
cross-plane thermal conductance of thin films, but can not be used in YIG/GGG
(GaGdO) systems in its standard form. We use two-dimensional
modeling of heat transport and introduce a technique based on Bayesian
statistics to evaluate measurement data taken from the 3-omega method. Our
analysis method allows us to study materials systems that have not been
accessible with the conventionally used 3-omega analysis. Temperature dependent
thermal conductance data of thin film YIG are of major importance for
experiments in the field of spin-caloritronics. Here we show data between room
temperature and 10 K for films covering a wide thickness range as well as the
magnetic field effect on the thermal conductance between 10 K and 50 K
Construction of the Pauli-Villars-regulated Dirac vacuum in electromagnetic fields
Using the Pauli-Villars regularization and arguments from convex analysis, we
construct solutions to the classical time-independent Maxwell equations in
Dirac's vacuum, in the presence of small external electromagnetic sources. The
vacuum is not an empty space, but rather a quantum fluctuating medium which
behaves as a nonlinear polarizable material. Its behavior is described by a
Dirac equation involving infinitely many particles. The quantum corrections to
the usual Maxwell equations are nonlinear and nonlocal. Even if photons are
described by a purely classical electromagnetic field, the resulting vacuum
polarization coincides to first order with that of full Quantum
Electrodynamics.Comment: Final version to appear in Arch. Rat. Mech. Analysi
- …
