3,446 research outputs found

    High resolution power spectra of daily Zurich sunspot numbers

    Get PDF
    High resolution power spectra of 77 years of Zurich daily sunspot numbers were computed using various lags and data point intervals. Major harmonic peaks of the approximately 124-month period showed up strongly as well as the 27-day solar rotational period

    The Puzzle of the Flyby Anomaly

    Full text link
    Close planetary flybys are frequently employed as a technique to place spacecraft on extreme solar system trajectories that would otherwise require much larger booster vehicles or may not even be feasible when relying solely on chemical propulsion. The theoretical description of the flybys, referred to as gravity assists, is well established. However, there seems to be a lack of understanding of the physical processes occurring during these dynamical events. Radio-metric tracking data received from a number of spacecraft that experienced an Earth gravity assist indicate the presence of an unexpected energy change that happened during the flyby and cannot be explained by the standard methods of modern astrodynamics. This puzzling behavior of several spacecraft has become known as the flyby anomaly. We present the summary of the recent anomalous observations and discuss possible ways to resolve this puzzle.Comment: 6 pages, 1 figure. Accepted for publication by Space Science Review

    A proof of Jarzynski's non-equilibrium work theorem for dynamical systems that conserve the canonical distribution

    Full text link
    We present a derivation of the Jarzynski identity and the Crooks fluctuation theorem for systems governed by deterministic dynamics that conserves the canonical distribution such as Hamiltonian dynamics, Nose-Hoover dynamics, Nose-Hoover chains and Gaussian isokinetic dynamics. The proof is based on a relation between the heat absorbed by the system during the non-equilibrium process and the Jacobian of the phase flow generated by the dynamics.Comment: 12 page

    A Nonliearly Dispersive Fifth Order Integrable Equation and its Hierarchy

    Full text link
    In this paper, we study the properties of a nonlinearly dispersive integrable system of fifth order and its associated hierarchy. We describe a Lax representation for such a system which leads to two infinite series of conserved charges and two hierarchies of equations that share the same conserved charges. We construct two compatible Hamiltonian structures as well as their Casimir functionals. One of the structures has a single Casimir functional while the other has two. This allows us to extend the flows into negative order and clarifies the meaning of two different hierarchies of positive flows. We study the behavior of these systems under a hodograph transformation and show that they are related to the Kaup-Kupershmidt and the Sawada-Kotera equations under appropriate Miura transformations. We also discuss briefly some properties associated with the generalization of second, third and fourth order Lax operators.Comment: 11 pages, LaTex, version to be published in Journal of Nonlinear Mathematical Physics, has expanded discussio

    Florística e fitossociologia em áreas de manejo de açaizais no estuário amazônico.

    Get PDF
    Este estudo teve como objetivo analisar a composição florística e a fitossociologia em três regiões do estuário amazônico em que é praticado o manejo de açaizais nativos. Nas regiões foram instaladas 30 parcelas de 0,5 ha e amostradas todas as espécies arbóreas e palmeiras com DAP ? 5 cm, mediu-se também a circunferência a altura do peito (CAP) com fita métrica de precisão de 1mm. Foram inventariados 10821 indivíduos, representados por 114 espécies, 96 gêneros e 33 famílias. As famílias mais representativas foram Arecaceae (9 espécies e 8007 indivíduos), seguida por Rubiaceae (2 espécies e 522 indivíduos),Myristicaceae (1 espécie e 268 indivíduos), Malvaceae (10 espécies e 264 indivíduos) e Euphorbiaceae (4 espécies e 247 indivíduos). Constatou-se que a riqueza nas áreas de manejo inventariadas permaneceu alta apesar da pressão antrópica que essas áreas sofrem

    An AB effect without closing a loop

    Full text link
    We discuss the consequences of the Aharonov-Bohm effect in setups involving several charged particles, wherein none of the charged particles encloses a closed loop around the magnetic flux. We show that in such setups, the AB phase is encoded either in the relative phase of a bi-partite or multi-partite entangled photons states, or alternatively, gives rise to an overall AB phase that can be measured relative to another reference system. These setups involve processes of annihilation or creation of electron/hole pairs. We discuss the relevance of such effects in "vacuum Birefringence" in QED, and comment on their connection to other known effects.Comment: 4 pages, 3 figure

    Thermal conductance of thin film YIG determined using Bayesian statistics

    Full text link
    Thin film YIG (Y3_3Fe5_5O12_{12}) is a prototypical material for experiments on thermally generated pure spin currents and the spin Seebeck effect. The 3-omega method is an established technique to measure the cross-plane thermal conductance of thin films, but can not be used in YIG/GGG (Ga3_3Gd5_5O12_{12}) systems in its standard form. We use two-dimensional modeling of heat transport and introduce a technique based on Bayesian statistics to evaluate measurement data taken from the 3-omega method. Our analysis method allows us to study materials systems that have not been accessible with the conventionally used 3-omega analysis. Temperature dependent thermal conductance data of thin film YIG are of major importance for experiments in the field of spin-caloritronics. Here we show data between room temperature and 10 K for films covering a wide thickness range as well as the magnetic field effect on the thermal conductance between 10 K and 50 K

    Construction of the Pauli-Villars-regulated Dirac vacuum in electromagnetic fields

    Full text link
    Using the Pauli-Villars regularization and arguments from convex analysis, we construct solutions to the classical time-independent Maxwell equations in Dirac's vacuum, in the presence of small external electromagnetic sources. The vacuum is not an empty space, but rather a quantum fluctuating medium which behaves as a nonlinear polarizable material. Its behavior is described by a Dirac equation involving infinitely many particles. The quantum corrections to the usual Maxwell equations are nonlinear and nonlocal. Even if photons are described by a purely classical electromagnetic field, the resulting vacuum polarization coincides to first order with that of full Quantum Electrodynamics.Comment: Final version to appear in Arch. Rat. Mech. Analysi
    corecore