3,449 research outputs found

    The converse problem for the multipotentialisation of evolution equations and systems

    Full text link
    We propose a method to identify and classify evolution equations and systems that can be multipotentialised in given target equations or target systems. We refer to this as the {\it converse problem}. Although we mainly study a method for (1+1)(1+1)-dimensional equations/system, we do also propose an extension of the methodology to higher-dimensional evolution equations. An important point is that the proposed converse method allows one to identify certain types of auto-B\"acklund transformations for the equations/systems. In this respect we define the {\it triangular-auto-B\"acklund transformation} and derive its connections to the converse problem. Several explicit examples are given. In particular we investigate a class of linearisable third-order evolution equations, a fifth-order symmetry-integrable evolution equation as well as linearisable systems.Comment: 31 Pages, 7 diagrams, submitted for consideratio

    Linearisable third order ordinary differential equations and generalised Sundman transformations

    Full text link
    We calculate in detail the conditions which allow the most general third order ordinary differential equation to be linearised in X'''(T)=0 under the transformation X(T)=F(x,t), dT=G(x,t)dt. Further generalisations are considered.Comment: 33 page

    The Puzzle of the Flyby Anomaly

    Full text link
    Close planetary flybys are frequently employed as a technique to place spacecraft on extreme solar system trajectories that would otherwise require much larger booster vehicles or may not even be feasible when relying solely on chemical propulsion. The theoretical description of the flybys, referred to as gravity assists, is well established. However, there seems to be a lack of understanding of the physical processes occurring during these dynamical events. Radio-metric tracking data received from a number of spacecraft that experienced an Earth gravity assist indicate the presence of an unexpected energy change that happened during the flyby and cannot be explained by the standard methods of modern astrodynamics. This puzzling behavior of several spacecraft has become known as the flyby anomaly. We present the summary of the recent anomalous observations and discuss possible ways to resolve this puzzle.Comment: 6 pages, 1 figure. Accepted for publication by Space Science Review

    A nonlocal connection between certain linear and nonlinear ordinary differential equations/oscillators

    Get PDF
    We explore a nonlocal connection between certain linear and nonlinear ordinary differential equations (ODEs), representing physically important oscillator systems, and identify a class of integrable nonlinear ODEs of any order. We also devise a method to derive explicit general solutions of the nonlinear ODEs. Interestingly, many well known integrable models can be accommodated into our scheme and our procedure thereby provides further understanding of these models.Comment: 12 pages. J. Phys. A: Math. Gen. 39 (2006) in pres

    A Nonliearly Dispersive Fifth Order Integrable Equation and its Hierarchy

    Full text link
    In this paper, we study the properties of a nonlinearly dispersive integrable system of fifth order and its associated hierarchy. We describe a Lax representation for such a system which leads to two infinite series of conserved charges and two hierarchies of equations that share the same conserved charges. We construct two compatible Hamiltonian structures as well as their Casimir functionals. One of the structures has a single Casimir functional while the other has two. This allows us to extend the flows into negative order and clarifies the meaning of two different hierarchies of positive flows. We study the behavior of these systems under a hodograph transformation and show that they are related to the Kaup-Kupershmidt and the Sawada-Kotera equations under appropriate Miura transformations. We also discuss briefly some properties associated with the generalization of second, third and fourth order Lax operators.Comment: 11 pages, LaTex, version to be published in Journal of Nonlinear Mathematical Physics, has expanded discussio

    Thermal conductance of thin film YIG determined using Bayesian statistics

    Full text link
    Thin film YIG (Y3_3Fe5_5O12_{12}) is a prototypical material for experiments on thermally generated pure spin currents and the spin Seebeck effect. The 3-omega method is an established technique to measure the cross-plane thermal conductance of thin films, but can not be used in YIG/GGG (Ga3_3Gd5_5O12_{12}) systems in its standard form. We use two-dimensional modeling of heat transport and introduce a technique based on Bayesian statistics to evaluate measurement data taken from the 3-omega method. Our analysis method allows us to study materials systems that have not been accessible with the conventionally used 3-omega analysis. Temperature dependent thermal conductance data of thin film YIG are of major importance for experiments in the field of spin-caloritronics. Here we show data between room temperature and 10 K for films covering a wide thickness range as well as the magnetic field effect on the thermal conductance between 10 K and 50 K

    Radiative Corrections to the Casimir Energy

    Get PDF
    The lowest radiative correction to the Casimir energy density between two parallel plates is calculated using effective field theory. Since the correlators of the electromagnetic field diverge near the plates, the regularized energy density is also divergent. However, the regularized integral of the energy density is finite and varies with the plate separation L as 1/L^7. This apparently paradoxical situation is analyzed in an equivalent, but more transparent theory of a massless scalar field in 1+1 dimensions confined to a line element of length L and satisfying Dirichlet boundary conditions.Comment: 7 pages, Late

    Towards a direct measurement of vacuum magnetic birefringence: PVLAS achievements

    Full text link
    Nonlinear effects in vacuum have been predicted but never observed yet directly. The PVLAS collaboration has long been working on an apparatus aimed at detecting such effects by measuring vacuum magnetic birefringence. Unfortunately the sensitivity has been affected by unaccounted noise and systematics since the beginning. A new small prototype ellipsometer has been designed and characterized at the Department of Physics of the University of Ferrara, Italy entirely mounted on a single seismically isolated optical bench. With a finesse F = 414000 and a cavity length L = 0.5 m we have reached the predicted sensitivity of psi = 2x10^-8 1/sqrt(Hz) given the laser power at the output of the ellipsomenter of P = 24 mW. This record result demonstrates the feasibility of reaching such sensitivities and opens the way to designing a dedicated apparatus for a first detection of vacuum magnetic birefringence

    About the connection between vacuum birefringence and the light-light scattering amplitude

    Get PDF
    Birefringence phenomena stemming from vacuum polarization are revisited in the framework of coherent scattering. Based on photon-photon scattering, our analysis brings out the direct connection between this process and vacuum birefringence. We show how this procedure can be extended to the Kerr and the Cotton-Mouton birefringences in vacuum, thus providing a unified treatment of various polarization schemes, including those involving static fields
    corecore