5,782 research outputs found

    Impact of socioeconomic status and subjective social class on overall and health-related quality of life

    Get PDF
    BACKGROUND: Our objective was to investigate the impact of socioeconomic status and subjective social class on health-related quality of life (HRQOL) vs. overall quality of life (QOL). METHODS: We performed a longitudinal analysis using data regarding 8250 individuals drawn from the Korean Longitudinal Study of Aging (KLoSA). We analyzed differences between HRQOL and QOL in individuals of various socioeconomic strata (high, middle, or low household income and education levels) and subjective social classes (high, middle, or low) at baseline (2009). RESULTS: Individuals with low household incomes and of low subjective social class had the highest probability of reporting discrepant HRQOL and QOL scores (B: 4.796; P < 0.0001), whereas individuals with high household incomes and high subjective social class had the lowest probability of discrepant HRQOL and QOL scores (B: −3.625; P = 0.000). Similar trends were seen when education was used as a proxy for socioeconomic status. CONCLUSION: In conclusion, both household income/subjective social class and education/subjective social class were found to have an impact on the degree of divergence between QOL and HRQOL. Therefore, in designing interventions, socioeconomic inequalities should be taken into account through the use of multi-dimensional measurement tools

    Unusual transport characteristics of nitrogen-doped single-walled carbon nanotubes

    Get PDF
    Electrical transport characteristics of nitrogen-doped single-walled carbon nanotubes (N-SWCNTs), in which the nitrogen dopant is believed to form a pyridinelike bonding configuration, are studied with the field effect transistor operations. Contrary to the expectation that the nitrogen atoms may induce a n -type doping, the electrical transports through our N-SWCNTs are either ambipolar in vacuum or p -type in air. Through the first-principles electronic structure calculations, we show that the nitrogen dopant indeed favors the pyridinelike configuration and the Fermi level of the pyridinelike N-SWCNT is almost at the intrinsic level.open01

    Structure and spectral features of H+(H2O)(7): Eigen versus Zundel forms

    Get PDF
    The two dimensional (2D) to three dimensional (3D) transition for the protonated water cluster has been controversial, in particular, for H+(H2O)(7). For H+(H2O)(7) the 3D structure is predicted to be lower in energy than the 2D structure at most levels of theory without zero-point energy (ZPE) correction. On the other hand, with ZPE correction it is predicted to be either 2D or 3D depending on the calculational levels. Although the ZPE correction favors the 3D structure at the level of coupled cluster theory with singles, doubles, and perturbative triples excitations [CCSD(T)] using the aug-cc-pVDZ basis set, the result based on the anharmonic zero-point vibrational energy correction favors the 2D structure. Therefore, the authors investigated the energies based on the complete basis set limit scheme (which we devised in an unbiased way) at the resolution of the identity approximation Moller-Plesset second order perturbation theory and CCSD(T) levels, and found that the 2D structure has the lowest energy for H+(H2O)(7) [though nearly isoenergetic to the 3D structure for D+(D2O)(7)]. This structure has the Zundel-type configuration, but it shows the quantum probabilistic distribution including some of the Eigen-type configuration. The vibrational spectra of MP2/aug-cc-pVDZ calculations and Car-Parrinello molecular dynamics simulations, taking into account the thermal and dynamic effects, show that the 2D Zundel-type form is in good agreement with experiments. (c) 2006 American Institute of Physics.open353

    Estimating remineralized phosphate and its remineralization rate in the northern East China Sea during Summer 1997 : a snapshot study before Three-Gorges Dam construction

    Get PDF
    © The Author(s), 2016. This article is distributed under the terms of the Creative Commons Attribution License. The definitive version was published in Terrestrial, Atmospheric and Oceanic Sciences 27 (2016): 955-963, doi:10.3319/TAO.2016.01.24.01(Oc).The northern East China Sea (a.k.a., “The South Sea”) is a dynamic zone that exerts a variety of effects on the marine ecosystem due to Three-Gorges Dam construction. As the northern East China Sea region is vulnerable to climate forcing and anthropogenic impacts, it is important to investigate how the remineralization rate in the northern East China Sea has changed in response to such external forcing. We used an historical hydrographic dataset from August 1997 to obtain a baseline for future comparison. We estimate the amount of remineralized phosphate by decomposing the physical mixing and biogeochemical process effect using water column measurements (temperature, salinity, and phosphate). The estimated remineralized phosphate column inventory ranged from 0.8 to 42.4 mmol P m-2 (mean value of 15.2 ± 12.0 mmol P m-2). Our results suggest that the Tsushima Warm Current was a strong contributor to primary production during the summer of 1997 in the study area. The estimated summer (June - August) remineralization rate in the region before Three-Gorges Dam construction was 18 ± 14 mmol C m-2 d-1.T. Lee was supported by 2-Year Research Grant of Pusan National University. H.-C. Kim was partly supported by KOPRI project (PG15010). I.-N. Kim was partly supported by the National Research Foundation of Korea (NRF) grant funded by the Korea government (MSIP) (No. 2015R1C1A1A01052051). K.-T. Park was partly supported by KOPRI project (PE17010). J.-H. Kim was partly supported by the program of “Management of Marine Organisms Causing Ecological Disturbance and Harmful Effects” funded by KIMST/MOF. A.M. Macdonald’s contribution was supported by NOAA grant: #NA110AR4310063 and NSF grant: #OCE-1059881

    Control of mammalian G protein signaling by N-terminal acetylation and the N-end rule pathway

    Get PDF
    Rgs2, a regulator of G proteins, lowers blood pressure by decreasing signaling through Gαq. Human patients expressing Met-Leu-Rgs2 (ML-Rgs2) or Met-Arg-Rgs2 (MR-Rgs2) are hypertensive relative to people expressing wild-type Met-Gln-Rgs2 (MQ-Rgs2). We found that wild-type MQ-Rgs2 and its mutant, MR-Rgs2, were destroyed by the Ac/N-end rule pathway, which recognizes Nα-terminally acetylated (Nt-acetylated) proteins. The shortest-lived mutant, ML-Rgs2, was targeted by both the Ac/N-end rule and Arg/N-end rule pathways. The latter pathway recognizes unacetylated N-terminal residues. Thus, the Nt-acetylated Ac-MX-Rgs2 (X = Arg, Gln, Leu) proteins are specific substrates of the mammalian Ac/N-end rule pathway. Furthermore, the Ac/N-degron of Ac-MQ-Rgs2 was conditional, and Teb4, an endoplasmic reticulum (ER) membrane-embedded ubiquitin ligase, was able to regulate G protein signaling by targeting Ac-MX-Rgs2 proteins for degradation through their N^α-terminal acetyl group

    Safety and tissue yield for percutaneous native kidney biopsy according to practitioner and ultrasound technique

    Get PDF
    BACKGROUND: Although percutaneous renal biopsy remains an essential tool in the diagnosis and treatment of renal diseases, in recent times the traditional procedure of nephrologists has been performed by non-nephrologists rather than nephrologists at many institutions. The present study assessed the safety and adequacy of tissue yield during percutaneous renal biopsy according to practitioners and techniques based on ultrasound. METHODS: This study included 658 native renal biopsies performed from 2005 to 2010 at a single centre. The biopsies were performed by nephrologists or expert ultrasound radiologists using the ultrasound-marked blind or real-time ultrasound-guided techniques. RESULTS: A total of 271 ultrasound-marked blind biopsies were performed by nephrologists, 170 real-time ultrasound-guided biopsies were performed by nephrologists, and 217 real-time ultrasound-guided biopsies were performed by radiologists during the study period. No differences in post-biopsy complications such as haematoma, need for transfusion and intervention, gross haematuria, pain, or infection were observed among groups. Glomerular numbers of renal specimens from biopsies performed by nephrologists without reference to any technique were higher than those obtained from real-time ultrasound-guided biopsies performed by expert ultrasound radiologists. CONCLUSIONS: Percutaneous renal biopsy performed by nephrologists was not inferior to that performed by expert ultrasound radiologists as related to specimen yield and post-biopsy complications

    Shifts in biogenic carbon flow from particulate to dissolved forms under high carbon dioxide and warm ocean conditions

    Get PDF
    Photosynthesis by phytoplankton in sunlit surface waters transforms inorganic carbon and nutrients into organic matter, a portion of which is subsequently transported vertically through the water column by the process known as the biological carbon pump (BCP). The BCP sustains the steep vertical gradient in total dissolved carbon, thereby contributing to net carbon sequestration. Any changes in the vertical transportation of the organic matter as a result of future climate variations will directly affect surface ocean carbon dioxide (CO 2) concentrations, and subsequently influence oceanic uptake of atmospheric CO 2 and climate. Here we present results of experiments designed to investigate the potential effects of ocean acidification and warming on the BCP. These perturbation experiments were carried out in enclosures (3,000 L volume) in a controlled mesocosm facility that mimicked future pCO 2 (∼900 ppmv) and temperature (3°C higher than ambient) conditions. The elevated CO 2 and temperature treatments disproportionately enhanced the ratio of dissolved organic carbon (DOC) production to particulate organic carbon (POC) production, whereas the total organic carbon (TOC) production remained relatively constant under all conditions tested. A greater partitioning of organic carbon into the DOC pool indicated a shift in the organic carbon flow from the particulate to dissolved forms, which may affect the major pathways involved in organic carbon export and sequestration under future ocean conditions

    Hydrated copper and gold monovalent cations: Ab initio study

    Get PDF
    To understand the hydration phenomena of noble transition metals, we investigated the structures, hydration energies, electronic properties, and spectra of the Cu+(H3O)(1-6) and Au+ (H2O)(1-6) clusters using ab initio calculations. The coordination numbers of these clusters are found to be only two, which is highly contrasted to those of Ag+ (H2O)(n) (which have the coordination numbers of 3-4) as well as the hydrated alkali metal ions (which have the coordination numbers of similar to6). For the possible identification of their interesting hydration structures, we predict their IR spectra for the OH stretch modes. (C) 2005 American Institute of Physics.open384
    corecore