26 research outputs found
Mutations in GABRB3
Objective: To examine the role of mutations in GABRB3 encoding the b3 subunit of the GABAA receptor in individual patients with epilepsy with regard to causality, the spectrum of genetic variants, their pathophysiology, and associated phenotypes. Methods: We performed massive parallel sequencing of GABRB3 in 416 patients with a range of epileptic encephalopathies and childhood-onset epilepsies and recruited additional patients with epilepsy with GABRB3 mutations from other research and diagnostic programs. Results: We identified 22 patients with heterozygous mutations in GABRB3, including 3 probands frommultiplex families. The phenotypic spectrum of the mutation carriers ranged from simple febrile seizures, genetic epilepsies with febrile seizures plus, and epilepsy withmyoclonic-atonic seizures to West syndrome and other types of severe, early-onset epileptic encephalopathies. Electrophysiologic analysis of 7 mutations in Xenopus laevis oocytes, using coexpression of wild-type or mutant beta(3), together with alpha(5) and gamma(2s) subunits and an automated 2-microelectrode voltage-clamp system, revealed reduced GABA-induced current amplitudes or GABA sensitivity for 5 of 7 mutations. Conclusions: Our results indicate that GABRB3 mutations are associated with a broad phenotypic spectrum of epilepsies and that reduced receptor function causing GABAergic disinhibition represents the relevant disease mechanism
NEXMIF encephalopathy:an X-linked disorder with male and female phenotypic patterns
Purpose Pathogenic variants in the X-linked gene NEXMIF (previously KIAA2022) are associated with intellectual disability (ID), autism spectrum disorder, and epilepsy. We aimed to delineate the female and male phenotypic spectrum of NEXMIF encephalopathy. Methods Through an international collaboration, we analyzed the phenotypes and genotypes of 87 patients with NEXMIF encephalopathy. Results Sixty-three females and 24 males (46 new patients) with NEXMIF encephalopathy were studied, with 30 novel variants. Phenotypic features included developmental delay/ID in 86/87 (99%), seizures in 71/86 (83%) and multiple comorbidities. Generalized seizures predominated including myoclonic seizures and absence seizures (both 46/70, 66%), absence with eyelid myoclonia (17/70, 24%), and atonic seizures (30/70, 43%). Males had more severe developmental impairment; females had epilepsy more frequently, and varied from unaffected to severely affected. All NEXMIF pathogenic variants led to a premature stop codon or were deleterious structural variants. Most arose de novo, although X-linked segregation occurred for both sexes. Somatic mosaicism occurred in two males and a family with suspected parental mosaicism. Conclusion NEXMIF encephalopathy is an X-linked, generalized developmental and epileptic encephalopathy characterized by myoclonic-atonic epilepsy overlapping with eyelid myoclonia with absence. Some patients have developmental encephalopathy without epilepsy. Males have more severe developmental impairment. NEXMIF encephalopathy arises due to loss-of-function variants
Comprehensive genetic diagnosis and therapeutic perspectives in 155 children with developmental and epileptic encephalopathy
We studied a retrospective cohort of children with developmental and epileptic encephalopathy (DEE), a group of neurological conditions characterized by early onset epilepsy and severe developmental delay. Cases were recruited from three university hospitals based on clinical criteria, after a blinded cross-validation process, and most were subject to both array-CGH and exome-based gene panel analyses. 155 subjects were included. A genetic diagnosis was identified in 105 (68 %). A majority of patients (71 %) had onset of symptoms before the age of one year. In this age group a disease-causing variant was identified in 73 % of children, the highest proportion of cases reported so far. Genetic heterogeneity was high, involving 40 different genes. The most prevalent gene was SCN1A. Eight genes were identified in multiple patients and accounted for 50 % of all diagnoses. The remaining genes represented ultra-rare disorders. In many cases, molecular diagnosis leads to treatment adaptation and allows for genetic counseling. Those results highlight the growing importance of genetic investigations especially in children with symptoms onset before the age of 1. Finally, we evaluated the disease-causing variants in an intention-to-treat approach and found that almost half would theoretically be amenable to personalized therapy using antisense oligonucleotides (ASOs)
Effect of one-year lumacaftor–ivacaftor treatment on glucose tolerance abnormalities in cystic fibrosis patients
International audienc
Effect of one-year lumacaftor–ivacaftor treatment on glucose tolerance abnormalities in cystic fibrosis patients
Defining and expanding the phenotype of <i>QARS</i>-associated developmental epileptic encephalopathy
ObjectiveThe study is aimed at widening the clinical and genetic spectrum and at assessing genotype-phenotype associations in QARS encephalopathy.MethodsThrough diagnostic gene panel screening in an epilepsy cohort, and recruiting through GeneMatcher and our international network, we collected 10 patients with biallelic QARS variants. In addition, we collected data on 12 patients described in the literature to further delineate the associated phenotype in a total cohort of 22 patients. Computer modeling was used to assess changes on protein folding.ResultsBiallelic pathogenic variants in QARS cause a triad of progressive microcephaly, moderate to severe developmental delay, and early-onset epilepsy. Microcephaly was present at birth in 65%, and in all patients at follow-up. Moderate (14%) or severe (73%) developmental delay was characteristic, with no achievement of sitting (85%), walking (86%), or talking (90%). Additional features included irritability (91%), hypertonia/spasticity (75%), hypotonia (83%), stereotypic movements (75%), and short stature (56%). Seventy-nine percent had pharmacoresistant epilepsy with mainly neonatal onset. Characteristic cranial MRI findings include early-onset progressive atrophy of cerebral cortex (89%) and cerebellum (61%), enlargement of ventricles (95%), and age-dependent delayed myelination (88%). A small subset of patients displayed a less severe phenotype.ConclusionsThese data revealed first genotype-phenotype associations and may serve for improved interpretation of new QARS variants and well-founded genetic counseling.</jats:sec
<i>Drosophila</i>functional screening of<i>de novo</i>variants in autism uncovers deleterious variants and facilitates discovery of rare neurodevelopmental diseases
SummaryIndividuals with autism spectrum disorders (ASD) exhibit an increased burden ofde novovariants in a broadening range of genes. We functionally tested the effects of ASD missense variants usingDrosophilathrough ‘humanization’ rescue and overexpression-based strategies. We studied 79 ASD variants in 74 genes identified in the Simons Simplex Collection and found 38% of them caused functional alterations. Moreover, we identifiedGLRA2as the cause of a spectrum of neurodevelopmental phenotypes beyond ASD in eight previously undiagnosed subjects. Functional characterization of variants in ASD candidate genes point to conserved neurobiological mechanisms and facilitates gene discovery for rare neurodevelopmental diseases.</jats:p
Recommended from our members
Drosophila functional screening of de novo variants in autism uncovers deleterious variants and facilitates discovery of rare neurodevelopmental diseases
Summary Individuals with autism spectrum disorders (ASD) exhibit an increased burden of de novo variants in a broadening range of genes. We functionally tested the effects of ASD missense variants using Drosophila through ‘humanization’ rescue and overexpression-based strategies. We studied 79 ASD variants in 74 genes identified in the Simons Simplex Collection and found 38% of them caused functional alterations. Moreover, we identified GLRA2 as the cause of a spectrum of neurodevelopmental phenotypes beyond ASD in eight previously undiagnosed subjects. Functional characterization of variants in ASD candidate genes point to conserved neurobiological mechanisms and facilitates gene discovery for rare neurodevelopmental diseases
Drosophila functional screening of de novo variants in autism uncovers damaging variants and facilitates discovery of rare neurodevelopmental diseases
Individuals with autism spectrum disorder (ASD) exhibit an increased burden of de novo mutations (DNMs) in a broadening range of genes. While these studies have implicated hundreds of genes in ASD pathogenesis, which DNMs cause functional consequences in vivo remains unclear. We functionally test the effects of ASD missense DNMs using Drosophila through “humanization” rescue and overexpression-based strategies. We examine 79 ASD variants in 74 genes identified in the Simons Simplex Collection and find 38% of them to cause functional alterations. Moreover, we identify GLRA2 as the cause of a spectrum of neurodevelopmental phenotypes beyond ASD in 13 previously undiagnosed subjects. Functional characterization of variants in ASD candidate genes points to conserved neurobiological mechanisms and facilitates gene discovery for rare neurodevelopmental diseases
