10,129 research outputs found
Local structure of Liquid-Vapour Interfaces
The structure of a simple liquid may be characterised in terms of ground
state clusters of small numbers of atoms of that same liquid. Here we use this
sensitive structural probe to consider the effect of a liquid-vapour interface
upon the liquid structure. At higher temperatures (above around half the
critical temperature) we find that the predominant effect of the interface is
to reduce the local density, which significantly suppresses the local cluster
populations. At lower temperatures, however, pronounced interfacial layering is
found. This appears to be connected with significant orientational ordering of
clusters based on 3- and 5-membered rings, with the rings aligning
perpendicular and parallel to the interface respectively. At all temperatures,
we find that the population of five-fold symmetric structures is suppressed,
rather than enhanced, close to the interface.Comment: 10 pages, 8 figures, accepted for publication by Molecular Physic
Studying clinical reasoning, part 2: Applying social judgement theory
Part 1 of this paper (Harries and Harries 2001) examined the reasoning studies of the 1980s and 1990s and critiqued the ethnographic and informationprocessing approaches, based on stated information use. The need for an approach that acknowledged the intuitive nature of experienced thinkers’ reasoning was identified. Part 2 describes such an approach ± social judgement theory ± and presents a pilot application in occupational therapy research. The method used is judgement analysis. The issue under study is that of prioritisation policies in community mental health work. The results present the prioritisation policies of four occupational therapists in relation to managing community mental health referrals
The Universe is not a Computer
When we want to predict the future, we compute it from what we know about the
present. Specifically, we take a mathematical representation of observed
reality, plug it into some dynamical equations, and then map the time-evolved
result back to real-world predictions. But while this computational process can
tell us what we want to know, we have taken this procedure too literally,
implicitly assuming that the universe must compute itself in the same manner.
Physical theories that do not follow this computational framework are deemed
illogical, right from the start. But this anthropocentric assumption has
steered our physical models into an impossible corner, primarily because of
quantum phenomena. Meanwhile, we have not been exploring other models in which
the universe is not so limited. In fact, some of these alternate models already
have a well-established importance, but are thought to be mathematical tricks
without physical significance. This essay argues that only by dropping our
assumption that the universe is a computer can we fully develop such models,
explain quantum phenomena, and understand the workings of our universe. (This
essay was awarded third prize in the 2012 FQXi essay contest; a new afterword
compares and contrasts this essay with Robert Spekkens' first prize entry.)Comment: 10 pages with new afterword; matches published versio
Discriminating active from latent tuberculosis in patients presenting to community clinics.
BACKGROUND: Because of the high global prevalence of latent TB infection (LTBI), a key challenge in endemic settings is distinguishing patients with active TB from patients with overlapping clinical symptoms without active TB but with co-existing LTBI. Current methods are insufficiently accurate. Plasma proteomic fingerprinting can resolve this difficulty by providing a molecular snapshot defining disease state that can be used to develop point-of-care diagnostics. METHODS: Plasma and clinical data were obtained prospectively from patients attending community TB clinics in Peru and from household contacts. Plasma was subjected to high-throughput proteomic profiling by mass spectrometry. Statistical pattern recognition methods were used to define mass spectral patterns that distinguished patients with active TB from symptomatic controls with or without LTBI. RESULTS: 156 patients with active TB and 110 symptomatic controls (patients with respiratory symptoms without active TB) were investigated. Active TB patients were distinguishable from undifferentiated symptomatic controls with accuracy of 87% (sensitivity 84%, specificity 90%), from symptomatic controls with LTBI (accuracy of 87%, sensitivity 89%, specificity 82%) and from symptomatic controls without LTBI (accuracy 90%, sensitivity 90%, specificity 92%). CONCLUSIONS: We show that active TB can be distinguished accurately from LTBI in symptomatic clinic attenders using a plasma proteomic fingerprint. Translation of biomarkers derived from this study into a robust and affordable point-of-care format will have significant implications for recognition and control of active TB in high prevalence settings
Microscopic Observation Drug Susceptibility Assay for Rapid Diagnosis of Lymph Node Tuberculosis and Detection of Drug Resistance.
In this study, 132 patients with lymphadenopathy were investigated. Fifty-two (39.4%) were diagnosed with tuberculosis (TB). The microscopic observation drug susceptibility (MODS) assay provided rapid (13 days), accurate diagnosis (sensitivity, 65.4%) and reliable drug susceptibility testing (DST). Despite its lower sensitivity than that of other methods, its faster results and simultaneous DST are advantageous in resource-poor settings, supporting the incorporation of MODS into diagnostic algorithms for extrapulmonary TB
Can science writing collectives overcome barriers to more democratic communication and collaboration? Lessons from environmental communication praxis in southern Appalachia
Despite compelling reasons to involve nonscientists in the production of ecological knowledge, cultural and institutional factors often dis-incentivize engagement between scientists and nonscientists. This paper details our efforts to develop a biweekly newspaper column to increase communication between ecological scientists, social scientists, and the communities within which they work. Addressing community-generated topics and written by a collective of social and natural scientists, the column is meant to foster public dialog about socio-environmental issues and to lay the groundwork for the coproduction of environmental knowledge. Our collective approach to writing addresses some major barriers to public engagement by scientists, but the need to insert ourselves as intermediaries limits these gains. Overall, our efforts at environmental communication praxis have not generated significant public debate, but they have supported future coproduction by making scientists a more visible presence in the community and providing easy pathways for them to begin engaging the public. Finally, this research highlights an underappreciated barrier to public engagement: scientists are not merely disconnected from the public, but also connected in ways that may be functional for their research. Many field scientists, for example, seek out neutral and narrowly defined connections that permit research access but are largely incompatible with efforts to address controversial issues of environmental governance
Hepatic retransplantation in cholestatic liver disease: Impact of the interval to retransplantation on survival and resource utilization
The aim of our study was to quantitatively assess the impact of hepatic retransplantation on patient and graft survival and resource utilization. We studied patients undergoing hepatic retransplantation among 447 transplant recipients with primary biliary cirrhosis (PBC) and primary sclerosing cholangitis (PSC) at 3 transplantation centers. Cox proportional hazards regression analysis was used for survival analysis. Measures of resource utilization included the duration of hospitalization, length of stay in the intensive care unit, and the duration of transplantation surgery. Forty-six (10.3%) patients received 2 or more grafts during the follow-up period (median, 2.8 years). Patients who underwent retransplantation had a 3.8-fold increase in the risk of death compared with those without retransplantation (P < .01). Retransplantation after an interval of greater than 30 days from the primary graft was associated with a 6.7-fold increase in the risk of death (P < .01). The survival following retransplantations performed 30 days or earlier was similar to primary transplantations. Resource utilization was higher in patients who underwent multiple consecutive transplantations, even after adjustment for the number of grafts during the hospitalization. Among cholestatic liver disease patients, poor survival following hepatic retransplantation is attributed to late retransplantations, namely those performed more than 30 days after the initial transplantation. While efforts must be made to improve the outcome following retransplantation, a more critical evaluation may be warranted for late retransplantation candidates
- …
