1,520 research outputs found
Scalable Methods for Adaptively Seeding a Social Network
In recent years, social networking platforms have developed into
extraordinary channels for spreading and consuming information. Along with the
rise of such infrastructure, there is continuous progress on techniques for
spreading information effectively through influential users. In many
applications, one is restricted to select influencers from a set of users who
engaged with the topic being promoted, and due to the structure of social
networks, these users often rank low in terms of their influence potential. An
alternative approach one can consider is an adaptive method which selects users
in a manner which targets their influential neighbors. The advantage of such an
approach is that it leverages the friendship paradox in social networks: while
users are often not influential, they often know someone who is.
Despite the various complexities in such optimization problems, we show that
scalable adaptive seeding is achievable. In particular, we develop algorithms
for linear influence models with provable approximation guarantees that can be
gracefully parallelized. To show the effectiveness of our methods we collected
data from various verticals social network users follow. For each vertical, we
collected data on the users who responded to a certain post as well as their
neighbors, and applied our methods on this data. Our experiments show that
adaptive seeding is scalable, and importantly, that it obtains dramatic
improvements over standard approaches of information dissemination.Comment: Full version of the paper appearing in WWW 201
Subset feedback vertex set is fixed parameter tractable
The classical Feedback Vertex Set problem asks, for a given undirected graph
G and an integer k, to find a set of at most k vertices that hits all the
cycles in the graph G. Feedback Vertex Set has attracted a large amount of
research in the parameterized setting, and subsequent kernelization and
fixed-parameter algorithms have been a rich source of ideas in the field.
In this paper we consider a more general and difficult version of the
problem, named Subset Feedback Vertex Set (SUBSET-FVS in short) where an
instance comes additionally with a set S ? V of vertices, and we ask for a set
of at most k vertices that hits all simple cycles passing through S. Because of
its applications in circuit testing and genetic linkage analysis SUBSET-FVS was
studied from the approximation algorithms perspective by Even et al.
[SICOMP'00, SIDMA'00].
The question whether the SUBSET-FVS problem is fixed-parameter tractable was
posed independently by Kawarabayashi and Saurabh in 2009. We answer this
question affirmatively. We begin by showing that this problem is
fixed-parameter tractable when parametrized by |S|. Next we present an
algorithm which reduces the given instance to 2^k n^O(1) instances with the
size of S bounded by O(k^3), using kernelization techniques such as the
2-Expansion Lemma, Menger's theorem and Gallai's theorem. These two facts allow
us to give a 2^O(k log k) n^O(1) time algorithm solving the Subset Feedback
Vertex Set problem, proving that it is indeed fixed-parameter tractable.Comment: full version of a paper presented at ICALP'1
Compensation methods to support cooperative applications: A case study in automated verification of schema requirements for an advanced transaction model
Compensation plays an important role in advanced transaction models, cooperative work and workflow systems. A schema designer is typically required to supply for each transaction another transaction to semantically undo the effects of . Little attention has been paid to the verification of the desirable properties of such operations, however. This paper demonstrates the use of a higher-order logic theorem prover for verifying that compensating transactions return a database to its original state. It is shown how an OODB schema is translated to the language of the theorem prover so that proofs can be performed on the compensating transactions
Conflict-Free Coloring Made Stronger
In FOCS 2002, Even et al. showed that any set of discs in the plane can
be Conflict-Free colored with a total of at most colors. That is,
it can be colored with colors such that for any (covered) point
there is some disc whose color is distinct from all other colors of discs
containing . They also showed that this bound is asymptotically tight. In
this paper we prove the following stronger results:
\begin{enumerate} \item [(i)] Any set of discs in the plane can be
colored with a total of at most colors such that (a) for any
point that is covered by at least discs, there are at least
distinct discs each of which is colored by a color distinct from all other
discs containing and (b) for any point covered by at most discs,
all discs covering are colored distinctively. We call such a coloring a
{\em -Strong Conflict-Free} coloring. We extend this result to pseudo-discs
and arbitrary regions with linear union-complexity.
\item [(ii)] More generally, for families of simple closed Jordan regions
with union-complexity bounded by , we prove that there exists
a -Strong Conflict-Free coloring with at most colors.
\item [(iii)] We prove that any set of axis-parallel rectangles can be
-Strong Conflict-Free colored with at most colors.
\item [(iv)] We provide a general framework for -Strong Conflict-Free
coloring arbitrary hypergraphs. This framework relates the notion of -Strong
Conflict-Free coloring and the recently studied notion of -colorful
coloring. \end{enumerate}
All of our proofs are constructive. That is, there exist polynomial time
algorithms for computing such colorings
The impact of new developments on river water quality from an integrated system modelling perspective
Copyright © 2009 Elsevier. NOTICE: this is the author’s version of a work that was accepted for publication in Science of the Total Environment . Changes resulting from the publishing process, such as peer review, editing, corrections, structural formatting, and other quality control mechanisms may not be reflected in this document. Changes may have been made to this work since it was submitted for publication. A definitive version was subsequently published in Science of the Total Environment, Vol. 407 Issue 4 (2009). DOI: 10.1016/j.scitotenv.2008.10.033New housing areas are a ubiquitous feature of modern life in the developing and developed world alike built in response to rising social, demographic and economic pressures. Inevitably, these new developments will have an impact on the environment around them. Empirical evidence confirms the close relationship between urbanisation and ambient water quality. However, what is lacking so far is a detailed and more generalised analysis of environmental impact at a relatively small scale. The aim of this paper is to quantify the impact of new developments on river water quality within an integrated system modelling perspective. To conduct the impact analyses, an existing integrated urban wastewater model was used to predict water flow and quality in the sewer system, treatment plant and receiving water body. The impact on combined sewer overflow (CSO) discharges, treatment plant effluent, and within the river at various reaches is analysed by 'locating' a new development on a semi-hypothetical urban catchment. River water quality is used as feedback to constrain the scale of the new development within different thresholds in compliance with water quality standards. Further, the regional sensitivity analysis (RSA) method is applied to reveal the parameters with the greatest impact on water quality. These analyses will help to inform town planners and water specialists who advise them, how to minimise the impact of such developments given the specific context
Experimental and Numerical Study of the Flow Dynamics in Treatment Approaches for Aortic Arch Aneurysms
Aortic arch aneurysm is a complex aortic pathology which affects one or more aortic arch vessels. In this chapter, we explore the hemodynamic behavior of the aortic arch in aneurysmatic and treated cases with three currently available treatment approaches: surgery graft, hybrid stent‐graft and chimney stent‐graft. The analysis included time‐dependent experimental and numerical models of aneurysmatic arch and of the surgery, hybrid and chimney endovascular techniques. Dimensions of the models are based on typical anatomy, and boundary conditions are based on typical physiological flow. Flexible and transparent experimental models were used on a mock circulation in vitro experimental system to allow both visualization and time‐dependent flow and pressure measurements. The simulations used computational fluid dynamics (CFD) methods to delineate the time‐dependent flow dynamics in the four geometric models. Results of velocity vectors, flow patterns, pressure and wall shear stress distributions are presented. Both the numerical and experimental results agree on the poor hemodynamics of the aortic arch aneurysm and present the hemodynamic advantages of the surgery technique, implying the possible advantage of fenestrated stent‐graft for the aortic arch. Out of the two minimally invasive procedures, the hybrid procedure clearly exhibits better hemodynamic performances. The chimney graft technique is based on off‐the‐shelf devices; thus, it is low in cost and requires less pre‐operation preparations. However, it is associated with higher risks for complications, such as endoleaks and stroke. This chapter may give some insight into the hemodynamic characteristics of the different procedures
- …
