994 research outputs found
Cosmic Vortons and Particle Physics Constraints
We investigate the cosmological consequences of particle physics theories
that admit stable loops of superconducting cosmic string - {\it vortons}.
General symmetry breaking schemes are considered, in which strings are formed
at one energy scale and subsequently become superconducting in a secondary
phase transition at what may be a considerably lower energy scale. We estimate
the abundances of the ensuing vortons, and thereby derive constraints on the
relevant particle physics models from cosmological observations. These
constraints significantly restrict the category of admissible Grand Unified
theories, but are quite compatible with recently proposed effects whereby
superconducting strings may have been formed close to the electroweak phase
transition.Comment: 33 pages, 2 figures, RevTe
Transit Timing Variation of Near-Resonance Planetary Pairs: Confirmation of Twelve Multiple Planet Systems
We extract Transit Timing Variation (TTV) signals for 12 pairs of transiting
planet candidates that are near first-order Mean Motion Resonances (MMR), using
publicly available Kepler light curves (Q0-Q14). These pairs show significant
sinusoidal TTVs with theoretically predicted periods, which demonstrate these
planet candidates are orbiting and interacting in the same system. Although
individual masses cannot be accurately extracted based only on TTVs because of
the well known degeneracy between mass and eccentricity, TTV phases and
amplitudes can still place upper limits on the masses of the candidates,
confirming their planetary nature. Furthermore, the mass ratios of these planet
pairs can be relatively tight constrained using these TTVs. The planetary pair
in Kepler-82 (KOI-880) seems to have a particularly high mass ratio and density
ratio, which might indicate very different internal compositions of these two
planets. Some of these newly confirmed planets are also near MMR with other
candidates in the system, forming unique resonance chains, e.g., Kepler-80
(KOI-500).Comment: Accepted to ApJS. 17 pages, 11 figures, 3 tables. KOI 869 is replaced
with KOI 2038. Kepler numbers are assigne
Fermionic massive modes along cosmic strings
The influence on cosmic string dynamics of fermionic massive bound states
propagating in the vortex, and getting their mass only from coupling to the
string forming Higgs field, is studied. Such massive fermionic currents are
numerically found to exist for a wide range of model parameters and seen to
modify drastically the usual string dynamics coming from the zero mode currents
alone. In particular, by means of a quantization procedure, a new equation of
state describing cosmic strings with any kind of fermionic current, massive or
massless, is derived and found to involve, at least, one state parameter per
trapped fermion species. This equation of state exhibits transitions from
subsonic to supersonic regimes while the massive modes are filled.Comment: 27 pages, 15 figures, uses ReVTeX. Shortened version, accepted for
publication in Phys. Rev.
Chiral Vortons and Cosmological Constraints on Particle Physics
We investigate the cosmological consequences of particle physics theories
that admit stable loops of current-carrying string - vortons. In particular, we
consider chiral theories where a single fermion zero mode is excited in the
string core, such as those arising in supersymmetric theories with a D-term.
The resulting vortons formed in such theories are expected to be more stable
than their non-chiral cousins. General symmetry breaking schemes are considered
in which strings formed at one symmetry breaking scale become current-carrying
at a subsequent phase transition. The vorton abundance is estimated and
constraints placed on the underlying particle physics theories from
cosmological observations. Our constraints on the chiral theory are
considerably more stringent than the previous estimates for more general
theories.Comment: minor corrections made. This version will appear in PR
A Prograde, Low-Inclination Orbit for the Very Hot Jupiter WASP-3b
We present new spectroscopic and photometric observations of the transiting
exoplanetary system WASP-3. Spectra obtained during two separate transits
exhibit the Rossiter-McLaughlin (RM) effect and allow us to estimate the
sky-projected angle between the planetary orbital axis and the stellar rotation
axis, lambda = 3.3^{+2.5}_{-4.4} degrees. This alignment between the axes
suggests that WASP-3b has a low orbital inclination relative to the equatorial
plane of its parent star. During our first night of spectroscopic measurements,
we observed an unexpected redshift briefly exceeding the expected sum of the
orbital and RM velocities by 140 m/s. This anomaly could represent the
occultation of material erupting from the stellar photosphere, although it is
more likely to be an artifact caused by moonlight scattered into the
spectrograph.Comment: 23 pages, 4 figures, Accepted for publication in The Astrophysical
Journal, Replacement includes revised citation
Equation of state of cosmic strings with fermionic current-carriers
The relevant characteristic features, including energy per unit length and
tension, of a cosmic string carrying massless fermionic currents in the
framework of the Witten model in the neutral limit are derived through
quantization of the spinor fields along the string. The construction of a Fock
space is performed by means of a separation between longitudinal modes and the
so-called transverse zero energy solutions of the Dirac equation in the vortex.
As a result, quantization leads to a set of naturally defined state parameters
which are the number densities of particles and anti-particles trapped in the
cosmic string. It is seen that the usual one-parameter formalism for describing
the macroscopic dynamics of current-carrying vortices is not sufficient in the
case of fermionic carriers.Comment: 30 pages, 15 figures, uses ReVTeX, equation of state corrected,
comments and references added. Accepted for publication in Phys. Rev.
Detection of Planetary and Stellar Companions to Neighboring Stars via a Combination of Radial Velocity and Direct Imaging Techniques
13 pages, 6 figures, 4 tables, accepted for publication in the Astronomical Journal (submitted 25 Feb 2019; accepted 28 April 2019). Machine readable tables and Posteriors from the RadVel fits are available here: http://stephenkane.net/rvfits.tarThe sensitivities of radial velocity (RV) surveys for exoplanet detection are extending to increasingly longer orbital periods, where companions with periods of several years are now being regularly discovered. Companions with orbital periods that exceed the duration of the survey manifest in the data as an incomplete orbit or linear trend, a feature that can either present as the sole detectable companion to the host star, or as an additional signal overlain on the signatures of previously discovered companion(s). A diagnostic that can confirm or constrain scenarios in which the trend is caused by an unseen stellar rather than planetary companion is the use of high-contrast imaging observations. Here, we present RV data from the Anglo-Australian Planet Search (AAPS) for 20 stars that show evidence of orbiting companions. Of these, six companions have resolved orbits, with three that lie in the planetary regime. Two of these (HD 92987b and HD 221420b) are new discoveries. Follow-up observations using the Differential Speckle Survey Instrument (DSSI) on the Gemini South telescope revealed that 5 of the 20 monitored companions are likely stellar in nature. We use the sensitivity of the AAPS and DSSI data to place constraints on the mass of the companions for the remaining systems. Our analysis shows that a planetary-mass companion provides the most likely self-consistent explanation of the data for many of the remaining systems.Peer reviewedFinal Accepted Versio
Is "the theory of everything'' merely the ultimate ensemble theory?
We discuss some physical consequences of what might be called ``the ultimate
ensemble theory'', where not only worlds corresponding to say different sets of
initial data or different physical constants are considered equally real, but
also worlds ruled by altogether different equations. The only postulate in this
theory is that all structures that exist mathematically exist also physically,
by which we mean that in those complex enough to contain self-aware
substructures (SASs), these SASs will subjectively perceive themselves as
existing in a physically ``real'' world. We find that it is far from clear that
this simple theory, which has no free parameters whatsoever, is observationally
ruled out. The predictions of the theory take the form of probability
distributions for the outcome of experiments, which makes it testable. In
addition, it may be possible to rule it out by comparing its a priori
predictions for the observable attributes of nature (the particle masses, the
dimensionality of spacetime, etc) with what is observed.Comment: 29 pages, revised to match version published in Annals of Physics.
The New Scientist article and color figures are available at
http://www.sns.ias.edu/~max/toe_frames.html or from [email protected]
Characterizing the Cool KOIs II. The M Dwarf KOI-254 and its Hot Jupiter
We report the confirmation and characterization of a transiting gas giant
planet orbiting the M dwarf KOI-254 every 2.455239 days, which was originally
discovered by the Kepler mission. We use radial velocity measurements, adaptive
optics imaging and near infrared spectroscopy to confirm the planetary nature
of the transit events. KOI-254b is the first hot Jupiter discovered around an
M-type dwarf star. We also present a new model-independent method of using
broadband photometry to estimate the mass and metallicity of an M dwarf without
relying on a direct distance measurement. Included in this methodology is a new
photometric metallicity calibration based on J-K colors. We use this technique
to measure the physical properties of KOI-254 and its planet. We measure a
planet mass of Mp = 0.505 Mjup, radius Rp = 0.96 Rjup and semimajor axis a =
0.03 AU, based on our measured stellar mass Mstar = 0.59 Msun and radius Rstar
= 0.55 Rsun. We also find that the host star is metal-rich, which is consistent
with the sample of M-type stars known to harbor giant planets.Comment: AJ accepted (in press
Quantum dynamics in ultra-cold atomic physics
We review recent developments in the theory of quantum dynamics in ultra-cold
atomic physics, including exact techniques, but focusing on methods based on
phase-space mappings that are appli- cable when the complexity becomes
exponentially large. These phase-space representations include the truncated
Wigner, positive-P and general Gaussian operator representations which can
treat both bosons and fermions. These phase-space methods include both
traditional approaches using a phase-space of classical dimension, and more
recent methods that use a non-classical phase-space of increased
dimensionality. Examples used include quantum EPR entanglement of a four-mode
BEC, time-reversal tests of dephasing in single-mode traps, BEC quantum
collisions with up to 106 modes and 105 interacting particles, quantum
interferometry in a multi-mode trap with nonlinear absorp- tion, and the theory
of quantum entropy in phase-space. We also treat the approach of variational
optimization of the sampling error, giving an elementary example of a nonlinear
oscillator
- …
