7,228 research outputs found
On the origin of probability in quantum mechanics
I give a brief introduction to many worlds or "no wavefunction collapse"
quantum mechanics, suitable for non-specialists. I then discuss the origin of
probability in such formulations, distinguishing between objective and
subjective notions of probability.Comment: 7 pages, 2 figures. This version to appear as a Brief Review in
Modern Physics Letter
Time travel paradoxes, path integrals, and the many worlds interpretation of quantum mechanics
We consider two approaches to evading paradoxes in quantum mechanics with
closed timelike curves (CTCs). In a model similar to Politzer's, assuming pure
states and using path integrals, we show that the problems of paradoxes and of
unitarity violation are related; preserving unitarity avoids paradoxes by
modifying the time evolution so that improbable events bewcome certain. Deutsch
has argued, using the density matrix, that paradoxes do not occur in the "many
worlds interpretation". We find that in this approach account must be taken of
the resolution time of the device that detects objects emerging from a wormhole
or other time machine. When this is done one finds that this approach is viable
only if macroscopic objects traversing a wormhole interact with it so strongly
that they are broken into microscopic fragments.Comment: no figure
Percolation, depinning, and avalanches in capillary condensation of gases in disordered porous solids
We propose a comprehensive theoretical description of hysteresis in capillary
condensation of gases in mesoporous disordered materials. Applying mean-field
density functional theory to a coarse-grained lattice-gas model, we show that
the morphology of the hysteresis loops is influenced by out-of-equilibrium
transitions that are different on filling and on draining. In particular,
desorption may be associated to a depinning process and be percolation-like
without explicit pore-blocking effects.Comment: 4 pages, 5 figure
A General Information Theoretical Proof for the Second Law of Thermodynamics
We show that the conservation and the non-additivity of the information,
together with the additivity of the entropy make the entropy increase in an
isolated system. The collapse of the entangled quantum state offers an example
of the information non-additivity. Nevertheless, the later is also true in
other fields, in which the interaction information is important. Examples are
classical statistical mechanics, social statistics and financial processes. The
second law of thermodynamics is thus proven in its most general form. It is
exactly true, not only in quantum and classical physics but also in other
processes, in which the information is conservative and non-additive.Comment: 4 page
Quintessential Kination and Leptogenesis
Thermal leptogenesis induced by the CP-violating decay of a right-handed
neutrino (RHN) is discussed in the background of quintessential kination, i.e.,
in a cosmological model where the energy density of the early Universe is
assumed to be dominated by the kinetic term of a quintessence field during some
epoch of its evolution. This assumption may lead to very different
observational consequences compared to the case of a standard cosmology where
the energy density of the Universe is dominated by radiation. We show that,
depending on the choice of the temperature T_r above which kination dominates
over radiation, any situation between the strong and the super--weak wash--out
regime are equally viable for leptogenesis, even with the RHN Yukawa coupling
fixed to provide the observed atmospheric neutrino mass scale ~ 0.05 eV. For M<
T_r < M/100, i.e., when kination stops to dominate at a time which is not much
later than when leptogenesis takes place, the efficiency of the process,
defined as the ratio between the produced lepton asymmetry and the amount of CP
violation in the RHN decay, can be larger than in the standard scenario of
radiation domination. This possibility is limited to the case when the neutrino
mass scale is larger than about 0.01 eV. The super--weak wash--out regime is
obtained for T_r << M/100, and includes the case when T_r is close to the
nucleosynthesis temperature ~ 1 MeV. Irrespective of T_r, we always find a
sufficient window above the electroweak temperature T ~ 100 GeV for the
sphaleron transition to thermalize, so that the lepton asymmetry can always be
converted to the observed baryon asymmetry.Comment: 13 pages, 8 figure
Can Everett be Interpreted Without Extravaganza?
Everett's relative states interpretation of quantum mechanics has met with
problems related to probability, the preferred basis, and multiplicity. The
third theme, I argue, is the most important one. It has led to developments of
the original approach into many-worlds, many-minds, and decoherence-based
approaches. The latter especially have been advocated in recent years, in an
effort to understand multiplicity without resorting to what is often perceived
as extravagant constructions. Drawing from and adding to arguments of others, I
show that proponents of decoherence-based approaches have not yet succeeded in
making their ontology clear.Comment: Succinct analysis forthcoming in Found. Phy
Typicality vs. probability in trajectory-based formulations of quantum mechanics
Bohmian mechanics represents the universe as a set of paths with a
probability measure defined on it. The way in which a mathematical model of
this kind can explain the observed phenomena of the universe is examined in
general. It is shown that the explanation does not make use of the full
probability measure, but rather of a suitable set function deriving from it,
which defines relative typicality between single-time cylinder sets. Such a set
function can also be derived directly from the standard quantum formalism,
without the need of an underlying probability measure. The key concept for this
derivation is the {\it quantum typicality rule}, which can be considered as a
generalization of the Born rule. The result is a new formulation of quantum
mechanics, in which particles follow definite trajectories, but which is only
based on the standard formalism of quantum mechanics.Comment: 24 pages, no figures. To appear in Foundation of Physic
A Profile of Immigrants in Arkansas
Discusses key demographic trends, economic factors, and public policy issues associated with immigrants in Arkansas, which has the fourth-fastest-growing immigrant population in the nation
Glimmers of a pre-geometric perspective
Space-time measurements and gravitational experiments are made by using
objects, matter fields or particles and their mutual relationships. As a
consequence, any operationally meaningful assertion about space-time is in fact
an assertion about the degrees of freedom of the matter (\emph{i.e} non
gravitational) fields; those, say for definiteness, of the Standard Model of
particle physics. As for any quantum theory, the dynamics of the matter fields
can be described in terms of a unitary evolution of a state vector in a Hilbert
space. By writing the Hilbert space as a generic tensor product of "subsystems"
we analyse the evolution of a state vector on an information theoretical basis
and attempt to recover the usual space-time relations from the information
exchanges between these subsystems. We consider generic interacting second
quantized models with a finite number of fermionic degrees of freedom and
characterize on physical grounds the tensor product structure associated with
the class of "localized systems" and therefore with "position". We find that in
the case of free theories no space-time relation is operationally definable. On
the contrary, by applying the same procedure to the simple interacting model of
a one-dimensional Heisenberg spin chain we recover the tensor product structure
usually associated with "position". Finally, we discuss the possible role of
gravity in this framework.Comment: 30 page
How unitary cosmology generalizes thermodynamics and solves the inflationary entropy problem
We analyze cosmology assuming unitary quantum mechanics, using a tripartite
partition into system, observer and environment degrees of freedom. This
generalizes the second law of thermodynamics to "The system's entropy can't
decrease unless it interacts with the observer, and it can't increase unless it
interacts with the environment." The former follows from the quantum Bayes
Theorem we derive. We show that because of the long-range entanglement created
by cosmological inflation, the cosmic entropy decreases exponentially rather
than linearly with the number of bits of information observed, so that a given
observer can reduce entropy by much more than the amount of information her
brain can store. Indeed, we argue that as long as inflation has occurred in a
non-negligible fraction of the volume, almost all sentient observers will find
themselves in a post-inflationary low-entropy Hubble volume, and we humans have
no reason to be surprised that we do so as well, which solves the so-called
inflationary entropy problem. An arguably worse problem for unitary cosmology
involves gamma-ray-burst constraints on the "Big Snap", a fourth cosmic
doomsday scenario alongside the "Big Crunch", "Big Chill" and "Big Rip", where
an increasingly granular nature of expanding space modifies our life-supporting
laws of physics.
Our tripartite framework also clarifies when it is valid to make the popular
quantum gravity approximation that the Einstein tensor equals the quantum
expectation value of the stress-energy tensor, and how problems with recent
attempts to explain dark energy as gravitational backreaction from
super-horizon scale fluctuations can be understood as a failure of this
approximation.Comment: Updated to match accepted PRD version, including Quantum Bayes
Theorem derivation and rigorous proof that decoherence increases von Neumann
entropy. 20 pages, 5 fig
- …
