7,228 research outputs found

    On the origin of probability in quantum mechanics

    Full text link
    I give a brief introduction to many worlds or "no wavefunction collapse" quantum mechanics, suitable for non-specialists. I then discuss the origin of probability in such formulations, distinguishing between objective and subjective notions of probability.Comment: 7 pages, 2 figures. This version to appear as a Brief Review in Modern Physics Letter

    Time travel paradoxes, path integrals, and the many worlds interpretation of quantum mechanics

    Full text link
    We consider two approaches to evading paradoxes in quantum mechanics with closed timelike curves (CTCs). In a model similar to Politzer's, assuming pure states and using path integrals, we show that the problems of paradoxes and of unitarity violation are related; preserving unitarity avoids paradoxes by modifying the time evolution so that improbable events bewcome certain. Deutsch has argued, using the density matrix, that paradoxes do not occur in the "many worlds interpretation". We find that in this approach account must be taken of the resolution time of the device that detects objects emerging from a wormhole or other time machine. When this is done one finds that this approach is viable only if macroscopic objects traversing a wormhole interact with it so strongly that they are broken into microscopic fragments.Comment: no figure

    Percolation, depinning, and avalanches in capillary condensation of gases in disordered porous solids

    Full text link
    We propose a comprehensive theoretical description of hysteresis in capillary condensation of gases in mesoporous disordered materials. Applying mean-field density functional theory to a coarse-grained lattice-gas model, we show that the morphology of the hysteresis loops is influenced by out-of-equilibrium transitions that are different on filling and on draining. In particular, desorption may be associated to a depinning process and be percolation-like without explicit pore-blocking effects.Comment: 4 pages, 5 figure

    A General Information Theoretical Proof for the Second Law of Thermodynamics

    Full text link
    We show that the conservation and the non-additivity of the information, together with the additivity of the entropy make the entropy increase in an isolated system. The collapse of the entangled quantum state offers an example of the information non-additivity. Nevertheless, the later is also true in other fields, in which the interaction information is important. Examples are classical statistical mechanics, social statistics and financial processes. The second law of thermodynamics is thus proven in its most general form. It is exactly true, not only in quantum and classical physics but also in other processes, in which the information is conservative and non-additive.Comment: 4 page

    Quintessential Kination and Leptogenesis

    Full text link
    Thermal leptogenesis induced by the CP-violating decay of a right-handed neutrino (RHN) is discussed in the background of quintessential kination, i.e., in a cosmological model where the energy density of the early Universe is assumed to be dominated by the kinetic term of a quintessence field during some epoch of its evolution. This assumption may lead to very different observational consequences compared to the case of a standard cosmology where the energy density of the Universe is dominated by radiation. We show that, depending on the choice of the temperature T_r above which kination dominates over radiation, any situation between the strong and the super--weak wash--out regime are equally viable for leptogenesis, even with the RHN Yukawa coupling fixed to provide the observed atmospheric neutrino mass scale ~ 0.05 eV. For M< T_r < M/100, i.e., when kination stops to dominate at a time which is not much later than when leptogenesis takes place, the efficiency of the process, defined as the ratio between the produced lepton asymmetry and the amount of CP violation in the RHN decay, can be larger than in the standard scenario of radiation domination. This possibility is limited to the case when the neutrino mass scale is larger than about 0.01 eV. The super--weak wash--out regime is obtained for T_r << M/100, and includes the case when T_r is close to the nucleosynthesis temperature ~ 1 MeV. Irrespective of T_r, we always find a sufficient window above the electroweak temperature T ~ 100 GeV for the sphaleron transition to thermalize, so that the lepton asymmetry can always be converted to the observed baryon asymmetry.Comment: 13 pages, 8 figure

    Can Everett be Interpreted Without Extravaganza?

    Full text link
    Everett's relative states interpretation of quantum mechanics has met with problems related to probability, the preferred basis, and multiplicity. The third theme, I argue, is the most important one. It has led to developments of the original approach into many-worlds, many-minds, and decoherence-based approaches. The latter especially have been advocated in recent years, in an effort to understand multiplicity without resorting to what is often perceived as extravagant constructions. Drawing from and adding to arguments of others, I show that proponents of decoherence-based approaches have not yet succeeded in making their ontology clear.Comment: Succinct analysis forthcoming in Found. Phy

    Typicality vs. probability in trajectory-based formulations of quantum mechanics

    Full text link
    Bohmian mechanics represents the universe as a set of paths with a probability measure defined on it. The way in which a mathematical model of this kind can explain the observed phenomena of the universe is examined in general. It is shown that the explanation does not make use of the full probability measure, but rather of a suitable set function deriving from it, which defines relative typicality between single-time cylinder sets. Such a set function can also be derived directly from the standard quantum formalism, without the need of an underlying probability measure. The key concept for this derivation is the {\it quantum typicality rule}, which can be considered as a generalization of the Born rule. The result is a new formulation of quantum mechanics, in which particles follow definite trajectories, but which is only based on the standard formalism of quantum mechanics.Comment: 24 pages, no figures. To appear in Foundation of Physic

    A Profile of Immigrants in Arkansas

    Get PDF
    Discusses key demographic trends, economic factors, and public policy issues associated with immigrants in Arkansas, which has the fourth-fastest-growing immigrant population in the nation

    Glimmers of a pre-geometric perspective

    Full text link
    Space-time measurements and gravitational experiments are made by using objects, matter fields or particles and their mutual relationships. As a consequence, any operationally meaningful assertion about space-time is in fact an assertion about the degrees of freedom of the matter (\emph{i.e} non gravitational) fields; those, say for definiteness, of the Standard Model of particle physics. As for any quantum theory, the dynamics of the matter fields can be described in terms of a unitary evolution of a state vector in a Hilbert space. By writing the Hilbert space as a generic tensor product of "subsystems" we analyse the evolution of a state vector on an information theoretical basis and attempt to recover the usual space-time relations from the information exchanges between these subsystems. We consider generic interacting second quantized models with a finite number of fermionic degrees of freedom and characterize on physical grounds the tensor product structure associated with the class of "localized systems" and therefore with "position". We find that in the case of free theories no space-time relation is operationally definable. On the contrary, by applying the same procedure to the simple interacting model of a one-dimensional Heisenberg spin chain we recover the tensor product structure usually associated with "position". Finally, we discuss the possible role of gravity in this framework.Comment: 30 page

    How unitary cosmology generalizes thermodynamics and solves the inflationary entropy problem

    Full text link
    We analyze cosmology assuming unitary quantum mechanics, using a tripartite partition into system, observer and environment degrees of freedom. This generalizes the second law of thermodynamics to "The system's entropy can't decrease unless it interacts with the observer, and it can't increase unless it interacts with the environment." The former follows from the quantum Bayes Theorem we derive. We show that because of the long-range entanglement created by cosmological inflation, the cosmic entropy decreases exponentially rather than linearly with the number of bits of information observed, so that a given observer can reduce entropy by much more than the amount of information her brain can store. Indeed, we argue that as long as inflation has occurred in a non-negligible fraction of the volume, almost all sentient observers will find themselves in a post-inflationary low-entropy Hubble volume, and we humans have no reason to be surprised that we do so as well, which solves the so-called inflationary entropy problem. An arguably worse problem for unitary cosmology involves gamma-ray-burst constraints on the "Big Snap", a fourth cosmic doomsday scenario alongside the "Big Crunch", "Big Chill" and "Big Rip", where an increasingly granular nature of expanding space modifies our life-supporting laws of physics. Our tripartite framework also clarifies when it is valid to make the popular quantum gravity approximation that the Einstein tensor equals the quantum expectation value of the stress-energy tensor, and how problems with recent attempts to explain dark energy as gravitational backreaction from super-horizon scale fluctuations can be understood as a failure of this approximation.Comment: Updated to match accepted PRD version, including Quantum Bayes Theorem derivation and rigorous proof that decoherence increases von Neumann entropy. 20 pages, 5 fig
    corecore