1,788 research outputs found
Theories of practice and geography
Recent developments in theories of practice have seen place and space taken explicitly into account. In particular,
THEODORE SCHATZKI’s ‘site ontology’ offers distinctive but as yet under-explored means of engaging with human
geographies. By giving ontological priority to practices as constitutive of the social, this kind of practice theory provides an integrative conceptual framework that enables the analysis of diverse phenomena in relation to each other, over space and time, as they are constituted through practices. This article develops an outline agenda for bringing theories of practice, and particularly SCHATZKI’s ‘site ontology’, together with geographical inquiry. We elucidate this agenda through consideration of three contemporary preoccupations in human geography, comprising emotion, materiality and knowledge
The Heisenberg antiferromagnet on a triangular lattice: topological excitations
We study the topological defects in the classical Heisenberg antiferromagnet
in two dimensions on a triangular lattice (HAFT). While the topological
analysis of the order parameter space indicates that the defects are of
type, consideration of the energy leads us to a description of the low--energy
stationary points of the action in terms of vortices, as in the planar XY
model. Starting with the continuum description of the HAFT, we show
analytically that its partition function can be reduced to that of a
2--dimensional Coulomb gas with logarithmic interaction. Thus, at low
temperatures, the correlation length is determined by the spinwaves, while at
higher temperatures we expect a crossover to a Kosterlitz--Thouless type
behaviour. The results of recent Monte Carlo calculations of the correlation
length are consistent with such a crossover.Comment: 9 pages, revtex, preprint: ITP-UH 03/9
Exogenous application of platelet-leukocyte gel during open subacromial decompression contributes to improved patient outcome
Background: Platelet-leukocyte gel (PLG) is being used during various surgical procedures in an attempt to enhance the healing process. We studied the effects of PLG on postoperative recovery of patients undergoing open subacromial decompression (OSD). Methods: PLG was produced from platelet-leukocyte-rich plasma (P-LRP), prepared from a unit of whole blood. Forty patients were included in the study. Self-assessed evaluations, using the American Shoulder and Elbow Surgeons scoring system of activities of daily living (ADL), joint instability, pain levels, pain medications, and clinical evaluations for range of motion were conducted. Results: Platelet and leukocyte counts were significantly increased in the P-LRP compared to baseline counts. Treated patients demonstrated decreased visual analog scales for pain and used significantly less pain medication, had an improved range of motion during passive forward elevation, external rotation, external rotation with arm at 90 degrees abduction, internal rotation, and cross body adduction compared to control patients (p < 0.001). No differences in the instability score were observed between the groups. Furthermore, treated patients performed more ADL (p < 0.05). Conclusion: In the PLG-treated group, recovery was faster and patients returned earlier to daily activities and also took less pain medication than control subjects
Atomic quantum gases in Kagom\'e lattices
We demonstrate the possibility of creating and controlling an ideal and
\textit{trimerized} optical Kagom\'e lattice, and study the low temperature
physics of various atomic gases in such lattices. In the trimerized Kagom\'e
lattice, a Bose gas exhibits a Mott transition with fractional filling factors,
whereas a spinless interacting Fermi gas at 2/3 filling behaves as a quantum
magnet on a triangular lattice. Finally, a Fermi-Fermi mixture at half filling
for both components represents a frustrated quantum antiferromagnet with a
resonating-valence-bond ground state and quantum spin liquid behavior dominated
by continuous spectrum of singlet and triplet excitations. We discuss the
method of preparing and observing such quantum spin liquid employing molecular
Bose condensates.Comment: 4 pages, 1 figure. Missing affiliations adde
Atomic Fermi gas in the trimerized Kagom\'e lattice at the filling 2/3
We study low temperature properties of an atomic spinless interacting Fermi
gas in the trimerized Kagom\'e lattice for the case of two fermions per trimer.
The system is described by a quantum spin 1/2 model on the triangular lattice
with couplings depending on bonds directions. Using exact diagonalizations we
show that the system exhibits non-standard properties of a {\it quantum
spin-liquid crystal}, combining a planar antiferromagnetic order with an
exceptionally large number of low energy excitations.Comment: 4 pages & 4 figures + 2 tables, better version of Fig.
Quelles technologies le CIRAD peut-il proposer pour redynamiser la filière cocotier ?
Le CIRAD-CP a été amené récemment à préconiser une réorientation des objectifs de la filière cocotier de plusieurs pays producteurs. Cette stratégie repose essentiellement sur une diversification accrue et une plus grande prise en compte des marché locaux, ce qui implique le développement de petites et moyennes unités de transformation sur les lieux de production. La mise en place de telles unités nécessite de pouvoir disposer de technologies pouvant être exploitées efficacement dans de tels contextes et permettant l'obtention de produits de qualité. Dans cette optique, une équipe pluri-disciplinaire du CIRAD a entrepris l'étude de deux procédés relevant des voies humides ou semi-humides : l'extraction après séchage friture, et l'extraction assistée par les enzymes. Les technologies développées sont décrites en détail, et leur adéquation avec les objectifs assignés fait l'objet d'une discussio
Monte Carlo Simulation of the Heisenberg Antiferromagnet on a Triangular Lattice: Topological Excitations
We have simulated the classical Heisenberg antiferromagnet on a triangular
lattice using a local Monte Carlo algorithm. The behavior of the correlation
length , the susceptibility at the ordering wavevector , and
the spin stiffness clearly reflects the existence of two temperature
regimes -- a high temperature regime , in which the disordering
effect of vortices is dominant, and a low temperature regime ,
where correlations are controlled by small amplitude spin fluctuations. As has
previously been shown, in the last regime, the behavior of the above quantities
agrees well with the predictions of a renormalization group treatment of the
appropriate nonlinear sigma model. For , a satisfactory fit of the
data is achieved, if the temperature dependence of and is
assumed to be of the form predicted by the Kosterlitz--Thouless theory.
Surprisingly, the crossover between the two regimes appears to happen in a very
narrow temperature interval around .Comment: 13 pages, 8 Postscript figure
Quantum gases in trimerized kagom\'e lattices
We study low temperature properties of atomic gases in trimerized optical
kagom\'{e} lattices. The laser arrangements that can be used to create these
lattices are briefly described. We also present explicit results for the
coupling constants of the generalized Hubbard models that can be realized in
such lattices. In the case of a single component Bose gas the existence of a
Mott insulator phase with fractional numbers of particles per trimer is
verified in a mean field approach. The main emphasis of the paper is on an
atomic spinless interacting Fermi gas in the trimerized kagom\'{e} lattice with
two fermions per site. This system is shown to be described by a quantum spin
1/2 model on the triangular lattice with couplings that depend on the bond
directions. We investigate this model by means of exact diagonalization. Our
key finding is that the system exhibits non-standard properties of a quantum
spin-liquid crystal: it combines planar antiferromagnetic order in the ground
state with an exceptionally large number of low energy excitations. The
possibilities of experimental verification of our theoretical results are
critically discussed.Comment: 19 pages/14 figures, version to appear in Phys. Rev. A., numerous
minor corrections with respect to former lanl submissio
Cognitive improvement in patients with carotid stenosis is independent of treatment type
Treatment of carotid artery stenosis decreases the long-term risk of stroke and may enhance cerebral blood flow. It is therefore expected to have the potential to prevent cognitive decline or even improve cognition over the long-term. However, intervention itself can cause peri-interventional cerebral infarcts, possibly resulting in a decline of cognitive performance, at least for a short time. We investigated the long-term effects of three treatment methods on cognition and the emotional state one year after intervention. In this prospective observational cohort study, 58 patients with extracranial carotid artery stenosis (≥ 70%) underwent magnetic resonance imaging and assessment of cognition, mood and motor speed before carotid endarterectomy (n = 20), carotid stenting (n = 10) or best medical treatment (n = 28) (i.e., time-point 1 [TP1]), and at one-year follow-up (TP2). Gain scores, reflecting cognitive change after treatment, were built according to performance as (TP2 -TP1)/TP1. Independent of the treatment type, significant improvement in frontal lobe functions, visual memory and motor speed was found. Performance level, motor speed and mood at TP1 were negatively correlated with gain scores, with greater improvement in patients with low performance before treatment. Active therapy, whether conservative or interventional, produces significant improvement of frontal lobe functions and memory in patients with carotid artery disease, independent of treatment type. This effect was particularly pronounced in patients with low cognitive performance prior to treatment
- …
