372 research outputs found
Recommended from our members
Exotic herbaceous species interact with severe drought to alter soil N cycling in a semi-arid shrubland
Mediterranean-type ecosystems are increasingly threatened by climate change and exotic annual species, jeopardizing the native communities and their global biodiversity. In these systems, soil nitrogen (N) limits net primary production, and its availability can be influenced by both of these stressors. To understand the interactive effects of droughts and exotic herbaceous species on soil N, we monitored the temporal variability of soil inorganic N, net N mineralization, net nitrification, and NO3- leaching under native- and exotic-dominated stands exposed to rainfall manipulation plots in a Mediterranean-type shrub-dominated community. Increasing drought severity resulted in the accumulation of soil NH4+ and NO3-, with a more pronounced increase in exotic-dominated plots. Increased net N mineralization and net nitrification and reduced leaching losses were observed as mechanisms of inorganic N accumulation. In comparison to soils under native plants, soils under exotic plants had enhanced leaching losses upon soil rewetting. We propose that distinct traits of exotic annual herbaceous species associated with higher N inputs, faster turnover, and reduced temporal uptake determine the changes in N cycling in response to droughts. Severe droughts and exotic plants may produce a larger, more vulnerable pool of N that is prone to losses while providing a competitive advantage to promote exotic growth in these N-limited ecosystems
Integrating microbial ecology into ecosystem models: challenges and priorities
Microbial communities can potentially mediate feedbacks between global change and ecosystem function, owing to their sensitivity to environmental change and their control over critical biogeochemical processes. Numerous ecosystem models have been developed to predict global change effects, but most do not consider microbial mechanisms in detail. In this idea paper, we examine the extent to which incorporation of microbial ecology into ecosystem models improves predictions of carbon (C) dynamics under warming, changes in precipitation regime, and anthropogenic nitrogen (N) enrichment. We focus on three cases in which this approach might be especially valuable: temporal dynamics in microbial responses to environmental change, variation in ecological function within microbial communities, and N effects on microbial activity. Four microbially-based models have addressed these scenarios. In each case, predictions of the microbial-based models differ—sometimes substantially—from comparable conventional models. However, validation and parameterization of model performance is challenging. We recommend that the development of microbial-based models must occur in conjunction with the development of theoretical frameworks that predict the temporal responses of microbial communities, the phylogenetic distribution of microbial functions, and the response of microbes to N enrichment
Microclimate–forage growth linkages across two strongly contrasting precipitation years in a Mediterranean catchment
Given the complex topography of California rangelands, contrasting microclimates affect forage growth at catchment scales. However, documentation of microclimate–forage growth associations is limited, especially in Mediterranean regions experiencing pronounced climate change impacts. To better understand microclimate–forage growth linkages, we monitored forage productivity and root-zone soil temperature and moisture (0–15 and 15–30 cm) in 16 topographic positions in a 10-ha annual grassland catchment in California's Central Coast Range. Data were collected through two strongly contrasting growing seasons, a wet year (2016–17) with 287-mm precipitation and a dry year (2017–18) with 123-mm precipitation. Plant-available soil water storage (0–30 cm) was more than half full for most of the wet year; mean peak standing forage was 2790 kg ha−1 (range: 1597–4570 kg ha−1). The dry year had restricted plant-available water and mean peak standing forage was reduced to 970 kg ha−1 (range: 462–1496 kg ha−1). In the wet year, forage growth appeared energy limited (light and temperature): warmer sites produced more forage across a 3–4°C soil temperature gradient but late season growth was associated with moister sites spanning this energy gradient. In the dry year, the warmest topographic positions produced limited forage across a 10°C soil temperature gradient until late season rainfall in March. Linear models accounting for interactions between soil moisture and temperature explained about half of rapid, springtime forage growth variance. These findings reveal dynamic but clear microclimate–forage growth linkages in complex terrain, and thus, have implications for rangeland drought monitoring and dryland ecosystems modeling under climate change
Habitat structure: a fundamental concept and framework for urban soil ecology
Habitat structure is defined as the composition and arrangement of physical matter at a location. Although habitat structure is the physical template underlying ecological patterns and processes, the concept is relatively unappreciated and underdeveloped in ecology. However, it provides a fundamental concept for urban ecology because human activities in urban ecosystems are often targeted toward management of habitat structure. In addition, the concept emphasizes the fine-scale, on-the-ground perspective needed in the study of urban soil ecology. To illustrate this, urban soil ecology research is summarized from the perspective of habitat structure effects. Among the key conclusions emerging from the literature review are: (1) habitat structure provides a unifying theme for multivariate research about urban soil ecology; (2) heterogeneous urban habitat structures influence soil ecological variables in different ways; (3) more research is needed to understand relationships among sociological variables, habitat structure patterns and urban soil ecology. To stimulate urban soil ecology research, a conceptual framework is presented to show the direct and indirect relationships among habitat structure and ecological variables. Because habitat structure serves as a physical link between sociocultural and ecological systems, it can be used as a focus for interdisciplinary and applied research (e.g., pest management) about the multiple, interactive effects of urbanization on the ecology of soils
Recommended from our members
Empirical tests of trait–function relationships are crucial for advancing trait‐based restoration: a response to Merchant et al. (2023)
Trait-based restoration strategies are gaining significant attention in the scientific community. A recent article in Restoration Ecology by Merchant et al. outlined four reasons why traits are underused in restoration practice. In their response to the paper, Gornish et al. highlighted examples of how practitioners do, in fact, use traits in restoration and made recommendations for researchers to better engage with practitioners to leverage existing knowledge. Here, we clarify a preeminent challenge for either perspective: that we continue to lack the empirical data needed to develop and apply the effective trait-based tools envisioned by many researchers. Long-term, spatially replicated studies designed to address context-dependency are needed to address critical knowledge gaps. Co-developing projects with practitioners not only fosters more realistic and relatable study designs but also increases the likelihood of adopting new methods, enabling long-term research that advances theory while improving local outcomes through more accurate trait-based predictions
Recommended from our members
Living on leftovers: biomass management in annual grasslands may shift functional group dominance
Livestock grazing in North American rangelands has the capacity both to promote and control the spread of undesirable plant species. Within California annual grasslands, desirable forage peaks in spring and supports considerable livestock grazing. However, spring grazing appears to promote the invasion and spread of two late-season and unpalatable non-native annual grasses, Aegilops triuncialis and Elymus caput-medusae. We tested the hypothesis that grazing reduces the leaf area and water use of early-spring annuals, thus increasing residual soil water availability for the late-season species. We used grazing-exclosure experiments to examine the interactive effects of simulated grazing (i.e., clipping) and competition on soil moisture availability, and on physiological, phenological, and demographic responses. When compared to unclipped controls, spring clipping significantly increased late-season volumetric soil moisture by 13–24% in the top 7 cm of soil, and 8–11% in the top 20 cm of soil (p < 0.05, all sites), which supported significantly higher rates of stomatal conductance (73–100% increase) in both late-season invading species (p < 0.01, all sites). Flowering was significantly delayed in clipped plots for both invader species suggesting these species experienced a longer growing period (p < 0.0001 in all cases). In competition plots, the effects of clipping on the demographic response depended on neighborhood composition. When invaders were grown together, no significant effect of clipping on survival or reproduction was detected in either invader. However, when growing in mixtures with early-spring forage annuals or native species, clipping increased survival and reproductive output in late-season invader species by 3-fold. We suggest that strategies for arresting or reversing the dominance of these late-season invasive annuals must recognize the influence of current biomass management strategies on late-season resource availability
Quantifying soil hydrology to explain the development of vegetation at an ex-arable wetland restoration site
Wetland restoration frequently sets well-defined vegetation targets, but where restoration occurs on highly degraded land such targets are not practical and setting looser targets may be more appropriate. Where this more ‘open-ended’ approach to restoration is adopted, surveillance methods that can track developing wetland habitats need to be established. Water regime and soil structure are known to influence the distribution and composition of developing wetland vegetation, and may be quantified using Sum Exceedence Values (SEV), calculated using the position of the water table and knowledge of soil stress thresholds. Use of SEV to explain patterns in naturally colonizing vegetation on restored, ex-arable land was tested at Wicken Fen (UK). Analysis of values from ten locations showed that soil structure was highly heterogeneous. Five locations had shallow aeration stress thresholds and so had the potential to support diverse wetland assemblages. Deep aeration stress thresholds at other locations precluded the establishment of a diverse wetland flora, but identified areas where species-poor wetland assemblages may develop. SEV was found to be a useful tool for the surveillance of sites where restoration targets are not specified in detail at the outset and may help predict likely habitat outcomes at sites using an open-ended restoration approach
Sustaining Working Rangelands: Insights from Rancher Decision Making
Grazed rangeland ecosystems encompass diverse global land resources and are complex social-ecological systems from which society demands both goods (e.g., livestock and forage production) and services (e.g., abundant and high-quality water). Including the ranching community's perceptions, knowledge, and decision-making is essential to advancing the ongoing dialogue to define sustainable working rangelands. We surveyed 507 (33% response rate) California ranchers to gain insight into key factors shaping their decision-making, perspectives on effective management practices and ranching information sources, as well as their concerns. First, we found that variation in ranch structure, management goals, and decision making across California's ranching operations aligns with the call from sustainability science to maintain flexibility at multiple scales to support the suite of economic and ecological services they can provide. The diversity in ranching operations highlights why single-policy and management "panaceas" often fail. Second, the information resources ranchers rely on suggest that sustaining working rangelands will require collaborative, trust-based partnerships focused on achieving both economic and ecological goals. Third, ranchers perceive environmental regulations and government policies-rather than environmental drivers-as the major threats to the future of their operations
Patterns and mechanisms of conspecific and heterospecific interactions in a dry perennial grassland
1. Models of local stable coexistence require negative feedbacks, i.e. intraspecific interactions must be more negative than interspecific interactions. However, most competition experiments, often done in the glasshouse, have found evidence for competitive hierarchies. Measurement of interactions under realistic field conditions is necessary to assess their contribution to community dynamics, and explicit measurement of intermediaries thought to be important in interactions may allow studies to account for any variation in experimental results. 2. In this study, we compare conspecific and heterospecific interactions in a field experiment in a dry sand prairie in Michigan. We study the four dominant species at two different stages, germination and adult growth. Using seed addition and adult transplant experiments, we ask whether plants perform best in natural field monocultures of conspecifics, heterospecifics or no neighbour plots. We also measure abiotic environmental characteristics associated with each neighbourhood type and test whether performance can be explained by environmental effects. We hypothesize that plants will create competitive hierarchies because our experimental design is similar to classic competition experiments. 3. Neighbour species created consistent hierarchies in their effects on germination of all four target species, which is likely due to light limitation. However, interestingly, adult plant biomass for two of the three species (one species did not survive) was lower in conspecific monocultures compared to heterospecific or no neighbour plots, thus producing negative feedbacks. For two species, the effects of neighbours on adult growth are likely due to reduction of light and soil nitrate; for the third, however, resources could not explain the pattern that conspecific interactions were more negative than heterospecific. 4. Synthesis. These results suggest that patterns in the relative strength of conspecific and heterospecific competition depend on life-history stage. Moreover, resource uptake could explain some, but not all, of the interactions among species, suggesting that other factors such as microbial communities or other forms of niche partitioning may play a role and that field experiments are necessary to gauge their relative importance.Peer Reviewedhttp://deepblue.lib.umich.edu/bitstream/2027.42/79241/1/j.1365-2745.2010.01734.x.pd
Review of research to inform California's climate scoping plan: Agriculture and working lands
Agriculture in California contributes 8% of the state's greenhouse gas (GHG) emissions. To inform the state's policy and program strategy to meet climate targets, we review recent research on practices that can reduce emissions, sequester carbon and provide other co-benefits to producers and the environment across agriculture and rangeland systems. Importantly, the research reviewed here was conducted in California and addresses practices in our specific agricultural, socioeconomic and biophysical environment. Farmland conversion and the dairy and intensive livestock sector are the largest contributors to GHG emissions and offer the greatest opportunities for avoided emissions. We also identify a range of other opportunities including soil and nutrient management, integrated and diversified farming systems, rangeland management, and biomass-based energy generation. Additional research to replicate and quantify the emissions reduction or carbon sequestration potential of these practices will strengthen the evidence base for California climate policy
- …
