26 research outputs found

    Aberrant development of neuromuscular junctions in glycosylation-defective Large(myd) mice

    No full text
    Mice deficient in the glycosyltransferase Large are characterized by severe muscle and central nervous system abnormalities. In this study, we show that the formation and maintenance of neuromuscular junctions in Large(myd) mice are greatly compromised. Neuromuscular junctions are not confined to the muscle endplate zone but are widely spread and are frequently accompanied by exuberant nerve sprouting. Nerve terminals are highly fragmented and binding of alpha-bungarotoxin to postsynaptic acetylcholine receptors (AChRs) is greatly reduced. In vitro, Large(myd) myotubes are responsive to agrin but produce aberrant AChR clusters, which are larger in area and less densely packed with AChRs. In addition, AChR expression on the cell surface is diminished suggesting that AChR assembly or transport is defective. These results together with the finding that O-linked glycosylation at neuromuscular junctions of Large(myd) mice is compromised indicate that the action of Large is necessary for proper neuromuscular junction development.</p

    The Anti-Cancer Multikinase Inhibitor Sorafenib Impairs Cardiac Contractility by Reducing Phospholamban Phosphorylation and Sarcoplasmic Calcium Transients

    Get PDF
    Abstract Tyrosine-kinase inhibitors (TKIs) have revolutionized cancer therapy in recent years. Although more targeted than conventional chemotherapy, TKIs exhibit substantial cardiotoxicity, often manifesting as hypertension or heart failure. Here, we assessed myocyte intrinsic cardiotoxic effects of the TKI sorafenib and investigated underlying alterations of myocyte calcium homeostasis. We found that sorafenib reversibly decreased developed force in auxotonically contracting human myocardia (3 µM: −25 ± 4%, 10 µM: −29 ± 7%, 30 µM: −43 ± 12%, p < 0.01), reduced peak cytosolic calcium concentrations in isolated cardiomyocytes (10 µM: 52 ± 8.1% of baseline, p < 0.001), and slowed cytosolic calcium removal kinetics (RT50, RT10, Tau, p < 0.05). Beta-adrenergic stimulation induced augmentation of calcium transient (CaT) amplitude was attenuated in sorafenib-treated cells (2.7 ± 0.3-fold vs. 3.6 ± 0.2-fold in controls, p < 0.001). Sarcoplasmic reticulum (SR) calcium content was reduced to 67 ± 4% (p < 0.01), and SR calcium re-uptake slowed (p < 0.05). Sorafenib significantly reduced serine 16 phosphorylation of phospholamban (PLN, p < 0.05), while PLN threonine 17 and CaMKII (T286) phosphorylation were not altered. Our data demonstrate that sorafenib acutely impairs cardiac contractility by reducing S16 PLN phosphorylation, leading to reduced SR calcium content, CaT amplitude, and slowed cytosolic calcium removal. These results indicate myocyte intrinsic cardiotoxicity irrespective of effects on the vasculature and chronic cardiac remodeling
    corecore