104 research outputs found

    Movement patterns and athletic performance of leopards in the Okavango Delta

    Get PDF
    Although leopards are the most widespread of all the big cats and are known for their adaptability, they are elusive and little is known in detail about their movement and hunting energetics. We used high-resolution GPS/IMU (inertial measurement unit) collars to record position, activity and the first high-speed movement data on four male leopards in the Okavango Delta, an area with high habitat diversity and habitat fragmentation. Leopards in this study were generally active and conducted more runs during the night, with peaks in activity and number of runs in the morning and evening twilight. Runs were generally short (less than 100 m) and relatively slow (maximum speed 5.3 m s−1, mean of individual medians) compared to other large predators. Average daily travel distance was 11 km and maximum daily travel distance was 29 km. No direct correlation was found between average daily temperature and travel distance or between season and travel distance. Total daily energy requirements based on locomotor cost and basal metabolic rate varied little between individuals and over time. This study provides novel insights into movement patterns and athletic performance of leopards through quantitative high-resolution measurement of the locomotor, energetic, spatial and temporal movement characteristics. The results are unbiased by methodological and observational limitations characteristic of previous studies and demonstrate the utility of applying new technologies to field studies of elusive nocturnal species

    Comparative Morphology of the Penis and Clitoris in Four Species of Moles (Talpidae).

    Get PDF
    The penile and clitoral anatomy of four species of Talpid moles (broad-footed, star-nosed, hairy-tailed, and Japanese shrew moles) were investigated to define penile and clitoral anatomy and to examine the relationship of the clitoral anatomy with the presence or absence of ovotestes. The ovotestis contains ovarian tissue and glandular tissue resembling fetal testicular tissue and can produce androgens. The ovotestis is present in star-nosed and hairy-tailed moles, but not in broad-footed and Japanese shrew moles. Using histology, three-dimensional reconstruction, and morphometric analysis, sexual dimorphism was examined with regard to a nine feature masculine trait score that included perineal appendage length (prepuce), anogenital distance, and presence/absence of bone. The presence/absence of ovotestes was discordant in all four mole species for sex differentiation features. For many sex differentiation features, discordance with ovotestes was observed in at least one mole species. The degree of concordance with ovotestes was highest for hairy-tailed moles and lowest for broad-footed moles. In relationship to phylogenetic clade, sex differentiation features also did not correlate with the similarity/divergence of the features and presence/absence of ovotestes. Hairy-tailed and Japanese shrew moles reside in separated clades, but they exhibit a high degree of congruence. Broad-footed and hairy-tailed moles reside within the same clade but had one of the lowest correlations in features and presence/absence of ovotestes. Thus, phylogenetic affinity and the presence/absence of ovotestes are poor predictors for most sex differentiation features within mole external genitalia

    Plague Circulation and Population Genetics of the Reservoir Rattus rattus: The Influence of Topographic Relief on the Distribution of the Disease within the Madagascan Focus.

    Get PDF
    International audienceBACKGROUND: Landscape may affect the distribution of infectious diseases by influencing the population density and dispersal of hosts and vectors. Plague (Yersinia pestis infection) is a highly virulent, re-emerging disease, the ecology of which has been scarcely studied in Africa. Human seroprevalence data for the major plague focus of Madagascar suggest that plague spreads heterogeneously across the landscape as a function of the relief. Plague is primarily a disease of rodents. We therefore investigated the relationship between disease distribution and the population genetic structure of the black rat, Rattus rattus, the main reservoir of plague in Madagascar. METHODOLOGYPRINCIPAL FINDINGS: We conducted a comparative study of plague seroprevalence and genetic structure (15 microsatellite markers) in rat populations from four geographic areas differing in topology, each covering about 150-200 km(2) within the Madagascan plague focus. The seroprevalence levels in the rat populations mimicked those previously reported for humans. As expected, rat populations clearly displayed a more marked genetic structure with increasing relief. However, the relationship between seroprevalence data and genetic structure differs between areas, suggesting that plague distribution is not related everywhere to the effective dispersal of rats. CONCLUSIONSSIGNIFICANCE: Genetic diversity estimates suggested that plague epizootics had only a weak impact on rat population sizes. In the highlands of Madagascar, plague dissemination cannot be accounted for solely by the effective dispersal of the reservoir. Human social activities may also be involved in spreading the disease in rat and human populations

    Ecomorphology of Carnivora challenges convergent evolution

    Get PDF
    Convergent evolution is often reported in the mammalian order Carnivora. Their adaptations to particularly demanding feeding habits such as hypercarnivory and durophagy (consumption of tough food) appear to favour morphological similarities between distantly related species, especially in the skull. However, phylogenetic effect in phenotypic data might obscure such a pattern. We first validated the hypotheses that extant hypercarnivorous and durophagous large carnivorans converge in mandibular shape and form (size and shape). Hypercarnivores generally exhibit smaller volumes of the multidimensional shape and form space than their sister taxa, but this pattern is significantly different from random expectation only when hunting behaviour categorisations are taken into account. Durophages share areas of the morphospace, but this seems to be due to factors of contingency. Carnivorans that hunt in pack exhibit incomplete convergence while even stronger similarities occur in the mandible shape of solitary hunters due to the high functional demands in killing the prey. We identified a stronger phylogenetic signal in mandibular shape than in size. The quantification of evolutionary rates of changes suggests that mandible shape of solitary hunters evolved slowly when compared with other carnivorans. These results consistently indicate that the need for a strong bite force and robust mandible override sheer phylogenetic effect in solitary hunters

    Testing hypotheses for the function of the carnivoran baculum using finite-element analysis

    Get PDF
    The baculum (os penis) is a mineralized bone within the glans of the mammalian penis and is one of the most morphologically diverse structures in the mammal skeleton. Recent experimental work provides compelling evidence for sexual selection shaping the baculum, yet the functional mechanism by which this occurs remains unknown. Previous studies have tested biomechanical hypotheses for the role of the baculum based on simple metrics such as length and diameter, ignoring the wealth of additional shape complexity present. For the first time, to our knowledge, we apply a computational simulation approach (finite-element analysis; FEA) to quantify the three-dimensional biomechanical performance of carnivoran bacula (n = 74) based upon high-resolution micro-computed tomography scans. We find a marginally significant positive correlation between sexual size dimorphism and baculum stress under compressive loading, counter to the ‘vaginal friction’ hypothesis of bacula becoming more robust to overcome resistance during initial intromission. However, a highly significant negative relationship exists between intromission duration and baculum stress under dorsoventral bending. Furthermore, additional FEA simulations confirm that the presence of a ventral groove would reduce deformation of the urethra. We take this as evidence in support of the ‘prolonged intromission’ hypothesis, suggesting the carnivoran baculum has evolved in response to pressures on the duration of copulation and protection of the urethra

    Adult Circadian Behavior in Drosophila Requires Developmental Expression of cycle, But Not period

    Get PDF
    Circadian clocks have evolved as internal time keeping mechanisms that allow anticipation of daily environmental changes and organization of a daily program of physiological and behavioral rhythms. To better examine the mechanisms underlying circadian clocks in animals and to ask whether clock gene expression and function during development affected subsequent daily time keeping in the adult, we used the genetic tools available in Drosophila to conditionally manipulate the function of the CYCLE component of the positive regulator CLOCK/CYCLE (CLK/CYC) or its negative feedback inhibitor PERIOD (PER). Differential manipulation of clock function during development and in adulthood indicated that there is no developmental requirement for either a running clock mechanism or expression of per. However, conditional suppression of CLK/CYC activity either via per over-expression or cyc depletion during metamorphosis resulted in persistent arrhythmic behavior in the adult. Two distinct mechanisms were identified that may contribute to this developmental function of CLK/CYC and both involve the ventral lateral clock neurons (LNvs) that are crucial to circadian control of locomotor behavior: (1) selective depletion of cyc expression in the LNvs resulted in abnormal peptidergic small-LNv dorsal projections, and (2) PER expression rhythms in the adult LNvs appeared to be affected by developmental inhibition of CLK/CYC activity. Given the conservation of clock genes and circuits among animals, this study provides a rationale for investigating a possible similar developmental role of the homologous mammalian CLOCK/BMAL1 complex

    Adult Circadian Behavior in Drosophila Requires Developmental Expression of cycle, But Not period

    Get PDF
    Circadian clocks have evolved as internal time keeping mechanisms that allow anticipation of daily environmental changes and organization of a daily program of physiological and behavioral rhythms. To better examine the mechanisms underlying circadian clocks in animals and to ask whether clock gene expression and function during development affected subsequent daily time keeping in the adult, we used the genetic tools available in Drosophila to conditionally manipulate the function of the CYCLE component of the positive regulator CLOCK/CYCLE (CLK/CYC) or its negative feedback inhibitor PERIOD (PER). Differential manipulation of clock function during development and in adulthood indicated that there is no developmental requirement for either a running clock mechanism or expression of per. However, conditional suppression of CLK/CYC activity either via per over-expression or cyc depletion during metamorphosis resulted in persistent arrhythmic behavior in the adult. Two distinct mechanisms were identified that may contribute to this developmental function of CLK/CYC and both involve the ventral lateral clock neurons (LNvs) that are crucial to circadian control of locomotor behavior: (1) selective depletion of cyc expression in the LNvs resulted in abnormal peptidergic small-LNv dorsal projections, and (2) PER expression rhythms in the adult LNvs appeared to be affected by developmental inhibition of CLK/CYC activity. Given the conservation of clock genes and circuits among animals, this study provides a rationale for investigating a possible similar developmental role of the homologous mammalian CLOCK/BMAL1 complex

    The Osteology of the Basal Archosauromorph Tasmaniosaurus triassicus from the Lower Triassic of Tasmania, Australia

    Get PDF
    Proterosuchidae are the most taxonomically diverse archosauromorph reptiles sampled in the immediate aftermath of the Permo-Triassic mass extinction and represent the earliest radiation of Archosauriformes (archosaurs and closely related species). Proterosuchids are potentially represented by approximately 15 nominal species collected from South Africa, China, Russia, Australia and India, but the taxonomic content of the group is currently in a state of flux because of the poor anatomic and systematic information available for several of its putative members. Here, the putative proterosuchid Tasmaniosaurus triassicus from the Lower Triassic of Hobart, Tasmania (Australia),is redescribed. The holotype and currently only known specimen includes cranial and postcranial remains and the revision of this material sheds new light on the anatomy of the animal, including new data on the cranial endocast. Several bones are re-identified or reinterpreted, contrasting with the descriptions of previous authors. The new information provided here shows that Tasmaniosaurus closely resembles the South African proterosuchid Proterosuchus, but it differed in the presence of, for example, a slightly downturned premaxilla, a shorter anterior process of maxilla, and a diamond-shaped anterior end of interclavicle. Previous claims for the presence of gut contents in the holotype of Tasmaniosaurus are considered ambiguous. The description of the cranial endocast of Tasmaniosaurus provides for the first time information about the anatomy of this region in proterosuchids. The cranial endocast preserves possibly part of the vomero-nasal (= Jacobson's) system laterally to the olfactory bulbs. Previous claims of the absence of the vomero-nasal organs in archosaurs, which is suggested by the extant phylogenetic bracket, are questioned because its absence in both clades of extant archosaurs seems to be directly related with the independent acquisition of a non-ground living mode of life

    Tracing the origin of the panda's thumb

    Get PDF
    © 2015, Springer-Verlag Berlin Heidelberg. We investigate the relative development of the carnivoran radial sesamoids to untangle the evolution of this iconic structure. In the pandas (both giant and red), this `false thumb¿ is known to perform a grasping role during bamboo feeding in both the red and giant pandas. An original locomotor role has been inferred for ailurids, but this remains to be ascertained for ursids. A large sample of radial sesamoids of Indarctos arctoides from the Miocene of Batallones-3 (Spain) indicates that this early ailuropodine bear displayed a relatively hypertrophied radial sesamoid, with a configuration more similar to that of the red panda and other carnivorans than to that of giant pandas. This false thumb is the first evidence of this feature in the Ursidae, which can be linked to a more herbivorous diet. Moreover, in the two extant pandas, the false thumb should not be interpreted as an anatomical convergence, but as an exaptive convergence regarding its use during the bamboo feeding, which changes the evolutionary view of this singular structure.This study was supported by the Spanish Ministerio de Economía y Competitividad (CGL2011-25754, CGL2011-28681 and RYC–2009–04533 to D.M.A.). A.V. is a researcher in formation in the CSIC program JAE-PRE_CP2011 (CSIC program‘ Junta para la ampliación de estudios’), co-funded by the European Social Fund and has received funding from the European Union’s Seventh Framework Programme (FP7/2007–2013) under grant agreement no. 226506 (SYNTHESYS; SE-TAF-3637),Peer Reviewe
    corecore