137 research outputs found

    An elastoplastic framework for granular materials becoming cohesive through mechanical densification. Part I - small strain formulation

    Full text link
    Mechanical densification of granular bodies is a process in which a loose material becomes increasingly cohesive as the applied pressure increases. A constitutive description of this process faces the formidable problem that granular and dense materials have completely different mechanical behaviours (nonlinear elastic properties, yield limit, plastic flow and hardening laws), which must both be, in a sense, included in the formulation. A treatment of this problem is provided here, so that a new phenomenological, elastoplastic constitutive model is formulated, calibrated by experimental data, implemented and tested, that is capable of describing the transition between granular and fully dense states of a given material. The formulation involves a novel use of elastoplastic coupling to describe the dependence of cohesion and elastic properties on the plastic strain. The treatment falls within small strain theory, which is thought to be appropriate in several situations; however, a generalization of the model to large strain is provided in Part II of this paper.Comment: 42 pages, 27 figure

    Characterization and modeling to design and develop tailored-property filled glass composites

    Get PDF
    Particle-filled-glass composites (FGCs) are being developed as new materials with structure and properties engineered for materials joining (e.g., for solid oxide fuel cells). Relative to conventional sealing glasses used to make hermetic glass-to-metal (GtM) seals, FGCs with tailored properties offer significant potential as more crack resistant hermetic seals with better performance and reliability. Additionally, compared to process sensitive crystallizable glasses, FGCs offer broader processing latitude and robustness, and afford greater control of seal microstructure and properties. FGCs are being developed using a combination of fundamental materials science and materials engineering, employing: 1) experimentally-validated molecular modeling to better understand and control bulk and interface glass chemistry-structure-property relations to improve seal performance and reliability; and 2) composite property and process modeling to facilitate FGC design, and to optimize FGC manufacturability and properties. The modeling and characterization of glass chemistry-structure relations will be presented and discussed, including the classical force field model and glass characterization tools and techniques employed in this study. Initially, 3-component glasses containing 50-75 mole% SiO2 in the 25 BaO - x Al2O3 – (75-x) SiO2 system were melted, characterized, and simulated. Pedone’s multicomponent force field was adapted to and used within the LAMMPS molecular dynamics (MD) simulation code on Sandia’s Redsky supercomputer to complete the MD simulations. Analyses were completed to investigate and understand the effects of glass network forming (e.g. Si) and network modifying (e.g., Ba) ions on bulk and interface glass structure. Post processing analysis of the glass simulations yielded radial distribution function (RDF), atom-atom distance, coordination number (CN), bond angle, ring size, and Qn distribution data to compare with structural information obtained from magic angle spinning nuclear magnetic resonance (MAS NMR) and x-ray. Finally, the design, processing, and properties of the advance FGCs being developed will be presented and discussed. Composite mixing and processing models have been used to design processable, 5-40 volume% filler loaded FGC composites with a coefficient of thermal expansion (CTE) that can be tuned from 12.5 – 19 μm/μm/°C to match the CTE of a variety of different metals

    Modern Virtual Environments and Museums

    Get PDF
    Today, many places and environments are replicated digitally for several different reasons. Some of these popular use-cases include video-games, virtual travel, remote learning, and virtual museums. In some cases, they are purely for entertainment, and in others they are purely for convenience or reaching a wider audience. Digital museums, virtual tours, and even modern video games replicate actual and historical places into “Virtual Worlds” in order to overcome barriers like distance, travel, cost, availability, and even existence. Through studying various literature, case studies, and deployed applications, this project will attempt to understand the history and development of virtual worlds and how we use them today. Using the popular example of Virtual Museums, this paper and the associated project attempt to explore and analyze the value and quality of learning and process involved in the deployment of a virtual world.NASUNY Polytechnic InstituteCollege of Arts and SciencesM

    Advanced modeling and simulation to design and manufacture high performance and reliable advanced microelectronics and microsystems.

    Get PDF
    An interdisciplinary team of scientists and engineers having broad expertise in materials processing and properties, materials characterization, and computational mechanics was assembled to develop science-based modeling/simulation technology to design and reproducibly manufacture high performance and reliable, complex microelectronics and microsystems. The team's efforts focused on defining and developing a science-based infrastructure to enable predictive compaction, sintering, stress, and thermomechanical modeling in ''real systems'', including: (1) developing techniques to and determining materials properties and constitutive behavior required for modeling; (2) developing new, improved/updated models and modeling capabilities, (3) ensuring that models are representative of the physical phenomena being simulated; and (4) assessing existing modeling capabilities to identify advances necessary to facilitate the practical application of Sandia's predictive modeling technology
    corecore