1,532 research outputs found

    Quantum waveguides with a lateral semitransparent barrier: spectral and scattering properties

    Full text link
    We consider a quantum particle in a waveguide which consists of an infinite straight Dirichlet strip divided by a thin semitransparent barrier on a line parallel to the walls which is modeled by a δ\delta potential. We show that if the coupling strength of the latter is modified locally, i.e. it reaches the same asymptotic value in both directions along the line, there is always a bound state below the bottom of the essential spectrum provided the effective coupling function is attractive in the mean. The eigenvalues and eigenfunctions, as well as the scattering matrix for energies above the threshold, are found numerically by the mode-matching technique. In particular, we discuss the rate at which the ground-state energy emerges from the continuum and properties of the nodal lines. Finally, we investigate a system with a modified geometry: an infinite cylindrical surface threaded by a homogeneous magnetic field parallel to the cylinder axis. The motion on the cylinder is again constrained by a semitransparent barrier imposed on a ``seam'' parallel to the axis.Comment: a LaTeX source file with 12 figures (11 of them eps); to appear in J. Phys. A: Math. Gen. Figures 3, 5, 8, 9, 11 are given at 300 dpi; higher resolution originals are available from the author

    On the spectrum of a bent chain graph

    Full text link
    We study Schr\"odinger operators on an infinite quantum graph of a chain form which consists of identical rings connected at the touching points by δ\delta-couplings with a parameter αR\alpha\in\R. If the graph is "straight", i.e. periodic with respect to ring shifts, its Hamiltonian has a band spectrum with all the gaps open whenever α0\alpha\ne 0. We consider a "bending" deformation of the chain consisting of changing one position at a single ring and show that it gives rise to eigenvalues in the open spectral gaps. We analyze dependence of these eigenvalues on the coupling α\alpha and the "bending angle" as well as resonances of the system coming from the bending. We also discuss the behaviour of the eigenvalues and resonances at the edges of the spectral bands.Comment: LaTeX, 23 pages with 7 figures; minor changes, references added; to appear in J. Phys. A: Math. Theo

    A single-mode quantum transport in serial-structure geometric scatterers

    Full text link
    We study transport in quantum systems consisting of a finite array of N identical single-channel scatterers. A general expression of the S matrix in terms of the individual-element data obtained recently for potential scattering is rederived in this wider context. It shows in particular how the band spectrum of the infinite periodic system arises in the limit NN\to\infty. We illustrate the result on two kinds of examples. The first are serial graphs obtained by chaining loops or T-junctions. A detailed discussion is presented for a finite-periodic "comb"; we show how the resonance poles can be computed within the Krein formula approach. Another example concerns geometric scatterers where the individual element consists of a surface with a pair of leads; we show that apart of the resonances coming from the decoupled-surface eigenvalues such scatterers exhibit the high-energy behavior typical for the delta' interaction for the physically interesting couplings.Comment: 36 pages, a LaTeX source file with 2 TeX drawings, 3 ps and 3 jpeg figures attache

    Schroedinger operators with singular interactions: a model of tunneling resonances

    Full text link
    We discuss a generalized Schr\"odinger operator in L2(Rd),d=2,3L^2(\mathbb{R}^d), d=2,3, with an attractive singular interaction supported by a (d1)(d-1)-dimensional hyperplane and a finite family of points. It can be regarded as a model of a leaky quantum wire and a family of quantum dots if d=2d=2, or surface waves in presence of a finite number of impurities if d=3d=3. We analyze the discrete spectrum, and furthermore, we show that the resonance problem in this setting can be explicitly solved; by Birman-Schwinger method it is cast into a form similar to the Friedrichs model.Comment: LaTeX2e, 34 page

    Multiple bound states in scissor-shaped waveguides

    Full text link
    We study bound states of the two-dimensional Helmholtz equations with Dirichlet boundary conditions in an open geometry given by two straight leads of the same width which cross at an angle θ\theta. Such a four-terminal junction with a tunable θ\theta can realized experimentally if a right-angle structure is filled by a ferrite. It is known that for θ=90o\theta=90^o there is one proper bound state and one eigenvalue embedded in the continuum. We show that the number of eigenvalues becomes larger with increasing asymmetry and the bound-state energies are increasing as functions of θ\theta in the interval (0,90o)(0,90^o). Moreover, states which are sufficiently strongly bent exist in pairs with a small energy difference and opposite parities. Finally, we discuss how with increasing θ\theta the bound states transform into the quasi-bound states with a complex wave vector.Comment: 6 pages, 6 figure

    Weakly coupled states on branching graphs

    Full text link
    We consider a Schr\"odinger particle on a graph consisting of N\,N\, links joined at a single point. Each link supports a real locally integrable potential Vj\,V_j\,; the self--adjointness is ensured by the δ\,\delta\, type boundary condition at the vertex. If all the links are semiinfinite and ideally coupled, the potential decays as x1ϵ\,x^{-1-\epsilon} along each of them, is non--repulsive in the mean and weak enough, the corresponding Schr\"odinger operator has a single negative eigenvalue; we find its asymptotic behavior. We also derive a bound on the number of bound states and explain how the δ\,\delta\, coupling constant may be interpreted in terms of a family of squeezed potentials.Comment: LaTeX file, 7 pages, no figure

    PFI field days: Collaboration and farmer research

    Get PDF
    Oilseed flax production, grass-fed beef, and the Conservation Security Program are among the topics featured in Practical Farmers of Iowa\u27s (PFI) 2005 field day schedule. PFI celebrates 20 years of farmer-driven research and outreach with a special anniversary field day at the farm of Ron and Maria Rosmann, Harlan, on June 30. The Rosmanns, longtime sustainable agriculture leaders in Iowa, will showcase their diversified farming operation and will host Dick Thompson, PFI co-founder, and George DeVault, past editor of New Farm magazine

    Soybean aphid biocontrol research seeks cooperators

    Get PDF
    Soybean aphids have been sighted on V1-stage soybean plants this summer, and they may become a problem. Field infestations are often accompanied by beneficial insects, but it is not known whether these predators and parasites can be manipulated to reduce aphid damage. The Leopold Center is supporting our research on biocontrol of the soybean aphid

    Supporting Leopold Center IPM research through on-farm trials and demonstrations

    Get PDF
    The efforts of the Leopold Center Integrated Pest Management (IPM) Issue Team were augmented and advanced through collaboration with Practical Farmers of Iowa (PFI). Using a program of on-farm research, demonstrations, and farm field days, the project evaluated two methods that refine IPM by providing biological control options and/or more precise information about effective (as opposed to gross) pest infestation levels. Biological controls of alfalfa weevil and European corn borer were tested

    Two-component model of a spin-polarized transport

    Full text link
    Effect of the spin-involved interaction of electrons with impurity atoms or defects to the transport properties of a two-dimensional electron gas is described by using a simplifying two-component model. Components representing spin-up and spin-down states are supposed to be coupled at a discrete set of points within a conduction channel. The used limit of the short-range interaction allows to solve the relevant scattering problem exactly. By varying the model parameters different transport regimes of two-terminal devices with ferromagnetic contacts can be described. In a quasi-ballistic regime the resulting difference between conductances for the parallel and antiparallel orientation of the contact magnetization changes its sign as a function of the length of the conduction channel if appropriate model parameters are chosen. The effect is in agreement with recent experimental observations.Comment: 4 RevTeX pages with 4 figure
    corecore