2,408 research outputs found

    Inequalities for means of chords, with application to isoperimetric problems

    Full text link
    We consider a pair of isoperimetric problems arising in physics. The first concerns a Schr\"odinger operator in L2(R2)L^2(\mathbb{R}^2) with an attractive interaction supported on a closed curve Γ\Gamma, formally given by Δαδ(xΓ)-\Delta-\alpha \delta(x-\Gamma); we ask which curve of a given length maximizes the ground state energy. In the second problem we have a loop-shaped thread Γ\Gamma in R3\mathbb{R}^3, homogeneously charged but not conducting, and we ask about the (renormalized) potential-energy minimizer. Both problems reduce to purely geometric questions about inequalities for mean values of chords of Γ\Gamma. We prove an isoperimetric theorem for pp-means of chords of curves when p2p \leq 2, which implies in particular that the global extrema for the physical problems are always attained when Γ\Gamma is a circle. The article finishes with a discussion of the pp--means of chords when p>2p > 2.Comment: LaTeX2e, 11 page

    Scattering by local deformations of a straight leaky wire

    Full text link
    We consider a model of a leaky quantum wire with the Hamiltonian Δαδ(xΓ)-\Delta -\alpha \delta(x-\Gamma) in L2(R2)L^2(\R^2), where Γ\Gamma is a compact deformation of a straight line. The existence of wave operators is proven and the S-matrix is found for the negative part of the spectrum. Moreover, we conjecture that the scattering at negative energies becomes asymptotically purely one-dimensional, being determined by the local geometry in the leading order, if Γ\Gamma is a smooth curve and α\alpha \to\infty.Comment: Latex2e, 15 page

    A lower bound to the spectral threshold in curved tubes

    Full text link
    We consider the Laplacian in curved tubes of arbitrary cross-section rotating together with the Frenet frame along curves in Euclidean spaces of arbitrary dimension, subject to Dirichlet boundary conditions on the cylindrical surface and Neumann conditions at the ends of the tube. We prove that the spectral threshold of the Laplacian is estimated from below by the lowest eigenvalue of the Dirichlet Laplacian in a torus determined by the geometry of the tube.Comment: LaTeX, 13 pages; to appear in R. Soc. Lond. Proc. Ser. A Math. Phys. Eng. Sc

    An isoperimetric problem for leaky loops and related mean-chord inequalities

    Full text link
    We consider a class of Hamiltonians in L2(R2)L^2(\R^2) with attractive interaction supported by piecewise C2C^2 smooth loops Γ\Gamma of a fixed length LL, formally given by Δαδ(xΓ)-\Delta-\alpha\delta(x-\Gamma) with α>0\alpha>0. It is shown that the ground state of this operator is locally maximized by a circular Γ\Gamma. We also conjecture that this property holds globally and show that the problem is related to an interesting family of geometric inequalities concerning mean values of chords of Γ\Gamma.Comment: LaTeX, 16 page

    Quantum waveguides with a lateral semitransparent barrier: spectral and scattering properties

    Full text link
    We consider a quantum particle in a waveguide which consists of an infinite straight Dirichlet strip divided by a thin semitransparent barrier on a line parallel to the walls which is modeled by a δ\delta potential. We show that if the coupling strength of the latter is modified locally, i.e. it reaches the same asymptotic value in both directions along the line, there is always a bound state below the bottom of the essential spectrum provided the effective coupling function is attractive in the mean. The eigenvalues and eigenfunctions, as well as the scattering matrix for energies above the threshold, are found numerically by the mode-matching technique. In particular, we discuss the rate at which the ground-state energy emerges from the continuum and properties of the nodal lines. Finally, we investigate a system with a modified geometry: an infinite cylindrical surface threaded by a homogeneous magnetic field parallel to the cylinder axis. The motion on the cylinder is again constrained by a semitransparent barrier imposed on a ``seam'' parallel to the axis.Comment: a LaTeX source file with 12 figures (11 of them eps); to appear in J. Phys. A: Math. Gen. Figures 3, 5, 8, 9, 11 are given at 300 dpi; higher resolution originals are available from the author

    An isoperimetric problem for point interactions

    Full text link
    We consider Hamiltonian with NN point interactions in Rd,d=2,3,\R^d, d=2,3, all with the same coupling constant, placed at vertices of an equilateral polygon \PP_N. It is shown that the ground state energy is locally maximized by a regular polygon. The question whether the maximum is global is reduced to an interesting geometric problem.Comment: LaTeX 2e, 10 page

    A single-mode quantum transport in serial-structure geometric scatterers

    Full text link
    We study transport in quantum systems consisting of a finite array of N identical single-channel scatterers. A general expression of the S matrix in terms of the individual-element data obtained recently for potential scattering is rederived in this wider context. It shows in particular how the band spectrum of the infinite periodic system arises in the limit NN\to\infty. We illustrate the result on two kinds of examples. The first are serial graphs obtained by chaining loops or T-junctions. A detailed discussion is presented for a finite-periodic "comb"; we show how the resonance poles can be computed within the Krein formula approach. Another example concerns geometric scatterers where the individual element consists of a surface with a pair of leads; we show that apart of the resonances coming from the decoupled-surface eigenvalues such scatterers exhibit the high-energy behavior typical for the delta' interaction for the physically interesting couplings.Comment: 36 pages, a LaTeX source file with 2 TeX drawings, 3 ps and 3 jpeg figures attache

    Leaky quantum graphs: approximations by point interaction Hamiltonians

    Full text link
    We prove an approximation result showing how operators of the type Δγδ(xΓ)-\Delta -\gamma \delta (x-\Gamma) in L2(R2)L^2(\mathbb{R}^2), where Γ\Gamma is a graph, can be modeled in the strong resolvent sense by point-interaction Hamiltonians with an appropriate arrangement of the δ\delta potentials. The result is illustrated on finding the spectral properties in cases when Γ\Gamma is a ring or a star. Furthermore, we use this method to indicate that scattering on an infinite curve Γ\Gamma which is locally close to a loop shape or has multiple bends may exhibit resonances due to quantum tunneling or repeated reflections.Comment: LaTeX 2e, 31 pages with 18 postscript figure

    Geometric coupling thresholds in a two-dimensional strip

    Full text link
    We consider the Laplacian in a strip R×(0,d)\mathbb{R}\times (0,d) with the boundary condition which is Dirichlet except at the segment of a length 2a2a of one of the boundaries where it is switched to Neumann. This operator is known to have a non-empty and simple discrete spectrum for any a>0a>0. There is a sequence 0<a1<a2<...0<a_1<a_2<... of critical values at which new eigenvalues emerge from the continuum when the Neumann window expands. We find the asymptotic behavior of these eigenvalues around the thresholds showing that the gap is in the leading order proportional to (aan)2(a-a_n)^2 with an explicit coefficient expressed in terms of the corresponding threshold-energy resonance eigenfunction
    corecore