2,408 research outputs found
Inequalities for means of chords, with application to isoperimetric problems
We consider a pair of isoperimetric problems arising in physics. The first
concerns a Schr\"odinger operator in with an attractive
interaction supported on a closed curve , formally given by
; we ask which curve of a given length
maximizes the ground state energy. In the second problem we have a loop-shaped
thread in , homogeneously charged but not conducting,
and we ask about the (renormalized) potential-energy minimizer. Both problems
reduce to purely geometric questions about inequalities for mean values of
chords of . We prove an isoperimetric theorem for -means of chords
of curves when , which implies in particular that the global extrema
for the physical problems are always attained when is a circle. The
article finishes with a discussion of the --means of chords when .Comment: LaTeX2e, 11 page
Scattering by local deformations of a straight leaky wire
We consider a model of a leaky quantum wire with the Hamiltonian in , where is a compact
deformation of a straight line. The existence of wave operators is proven and
the S-matrix is found for the negative part of the spectrum. Moreover, we
conjecture that the scattering at negative energies becomes asymptotically
purely one-dimensional, being determined by the local geometry in the leading
order, if is a smooth curve and .Comment: Latex2e, 15 page
A lower bound to the spectral threshold in curved tubes
We consider the Laplacian in curved tubes of arbitrary cross-section rotating
together with the Frenet frame along curves in Euclidean spaces of arbitrary
dimension, subject to Dirichlet boundary conditions on the cylindrical surface
and Neumann conditions at the ends of the tube. We prove that the spectral
threshold of the Laplacian is estimated from below by the lowest eigenvalue of
the Dirichlet Laplacian in a torus determined by the geometry of the tube.Comment: LaTeX, 13 pages; to appear in R. Soc. Lond. Proc. Ser. A Math. Phys.
Eng. Sc
An isoperimetric problem for leaky loops and related mean-chord inequalities
We consider a class of Hamiltonians in with attractive
interaction supported by piecewise smooth loops of a fixed
length , formally given by with .
It is shown that the ground state of this operator is locally maximized by a
circular . We also conjecture that this property holds globally and
show that the problem is related to an interesting family of geometric
inequalities concerning mean values of chords of .Comment: LaTeX, 16 page
Quantum waveguides with a lateral semitransparent barrier: spectral and scattering properties
We consider a quantum particle in a waveguide which consists of an infinite
straight Dirichlet strip divided by a thin semitransparent barrier on a line
parallel to the walls which is modeled by a potential. We show that if
the coupling strength of the latter is modified locally, i.e. it reaches the
same asymptotic value in both directions along the line, there is always a
bound state below the bottom of the essential spectrum provided the effective
coupling function is attractive in the mean. The eigenvalues and
eigenfunctions, as well as the scattering matrix for energies above the
threshold, are found numerically by the mode-matching technique. In particular,
we discuss the rate at which the ground-state energy emerges from the continuum
and properties of the nodal lines. Finally, we investigate a system with a
modified geometry: an infinite cylindrical surface threaded by a homogeneous
magnetic field parallel to the cylinder axis. The motion on the cylinder is
again constrained by a semitransparent barrier imposed on a ``seam'' parallel
to the axis.Comment: a LaTeX source file with 12 figures (11 of them eps); to appear in J.
Phys. A: Math. Gen. Figures 3, 5, 8, 9, 11 are given at 300 dpi; higher
resolution originals are available from the author
An isoperimetric problem for point interactions
We consider Hamiltonian with point interactions in all
with the same coupling constant, placed at vertices of an equilateral polygon
\PP_N. It is shown that the ground state energy is locally maximized by a
regular polygon. The question whether the maximum is global is reduced to an
interesting geometric problem.Comment: LaTeX 2e, 10 page
A single-mode quantum transport in serial-structure geometric scatterers
We study transport in quantum systems consisting of a finite array of N
identical single-channel scatterers. A general expression of the S matrix in
terms of the individual-element data obtained recently for potential scattering
is rederived in this wider context. It shows in particular how the band
spectrum of the infinite periodic system arises in the limit . We
illustrate the result on two kinds of examples. The first are serial graphs
obtained by chaining loops or T-junctions. A detailed discussion is presented
for a finite-periodic "comb"; we show how the resonance poles can be computed
within the Krein formula approach. Another example concerns geometric
scatterers where the individual element consists of a surface with a pair of
leads; we show that apart of the resonances coming from the decoupled-surface
eigenvalues such scatterers exhibit the high-energy behavior typical for the
delta' interaction for the physically interesting couplings.Comment: 36 pages, a LaTeX source file with 2 TeX drawings, 3 ps and 3 jpeg
figures attache
Leaky quantum graphs: approximations by point interaction Hamiltonians
We prove an approximation result showing how operators of the type in , where is a graph,
can be modeled in the strong resolvent sense by point-interaction Hamiltonians
with an appropriate arrangement of the potentials. The result is
illustrated on finding the spectral properties in cases when is a ring
or a star. Furthermore, we use this method to indicate that scattering on an
infinite curve which is locally close to a loop shape or has multiple
bends may exhibit resonances due to quantum tunneling or repeated reflections.Comment: LaTeX 2e, 31 pages with 18 postscript figure
Geometric coupling thresholds in a two-dimensional strip
We consider the Laplacian in a strip with the
boundary condition which is Dirichlet except at the segment of a length of
one of the boundaries where it is switched to Neumann. This operator is known
to have a non-empty and simple discrete spectrum for any . There is a
sequence of critical values at which new eigenvalues emerge
from the continuum when the Neumann window expands. We find the asymptotic
behavior of these eigenvalues around the thresholds showing that the gap is in
the leading order proportional to with an explicit coefficient
expressed in terms of the corresponding threshold-energy resonance
eigenfunction
- …
