1,819 research outputs found

    Dynamic characteristics and processing of fillers in polyurethane elastomers for vibration damping applications

    Get PDF
    Polyurethane elastomers have the potential of being used to reduce vibrational noise in many engineering applications. The performance of the elastomer is directly related to matching the nature of the mechanical loss characteristics to the frequency and temperature dependence of the source of the vibration. Materials with a broad frequency response and good mechanical properties are desirable for situations were load bearing and isolation becomes an issue. Because automobile, and other related vehicles operate over a broad temperature range, it is desirable for the damping characteristics of the elastomer to ideally be independent of temperature and frequency. In practice, this is not possible and the creation of materials with a broad spectrum response is desirable. In this paper, the effects of various fillers on the breadth and temperature dependence of the vibration damping characteristics of a filled and crosslinked polyurethane elastomer are explored. The fillers studied are wollastonite, barium sulphate and talc. These materials have different shapes, sizes and surface chemistry and undergo different types of interaction with the matrix. The vibration damping characteristics were further varied by the use of a crosslinking agent. Data presented on the rheological characteristics indicate the strength of the filler-polyol interactions. Dielectric relaxation and dynamic mechanical thermal analysis demonstrate the way in which changes in the type of filler, concentration and amount of crosslinker lead to changes in the location and breadth of the energy dissipation process in these elastomers. The vibration damping characteristics of a selected material are presented to demonstrate the potential of these materials

    Global distribution of ship tracks from one year of AATSRdata

    Get PDF
    The perturbation of a cloud layer by ship-generated aerosol changes the cloud reflectivity and is identified by elongated structures in satellite images, known as ship tracks. As ship tracks indicate a pollution of the clean marine environment and also affect the radiation budget below and above the cloud, it is important to investigate their radiative and climate impact. In this study we use satellite data to examine the effects of ship tracks on a particular scene as well as on the global scale. The cloud optical and microphysical properties are derived using a semi-analytical retrieval technique combined with a look-up-table approach. Within the ship tracks a significant change in the droplet number concentration, the effective radius and the optical thickness are found compared to the unaffected cloud. The resulting cloud properties are used to calculate the radiation budget below and above the cloud. Local impacts are shown for a selected scene from MODIS on Terra. The mean reflectance at top of atmosphere (TOA) is increased by 40.8 Wm-2. For a particular scene chosen close to the West Coast of North America on 10th February 2003, ship emissions increase the backscattered solar radiation at TOA by 2.0Wm-2, corresponding to a negative radiative forcing (RF). A global distribution of ship tracks derived from one year of AATSR data shows high spatial and temporal variability with highest occurrence of ship tracks westward of North America and the southwest coast of Africa, but small RF on the global scale

    The confined hydrogen atom with a moving nucleus

    Get PDF
    We study the hydrogen atom confined to a spherical box with impenetrable walls but, unlike earlier pedagogical articles on the subject, we assume that the nucleus also moves. We obtain the ground-state energy approximately by means of first--order perturbation theory and by a more accurate variational approach. We show that it is greater than the one for the case in which the nucleus is clamped at the center of the box. Present approach resembles the well-known treatment of the helium atom with clamped nucleus

    Soft Listeria: actin-based propulsion of liquid drops

    Full text link
    We study the motion of oil drops propelled by actin polymerization in cell extracts. Drops deform and acquire a pear-like shape under the action of the elastic stresses exerted by the actin comet. We solve this free boundary problem and calculate the drop shape taking into account the elasticity of the actin gel and the variation of the polymerization velocity with normal stress. The pressure balance on the liquid drop imposes a zero propulsive force if gradients in surface tension or internal pressure are not taken into account. Quantitative parameters of actin polymerization are obtained by fitting theory to experiment.Comment: 5 pages, 4 figure

    On the equation of state of a dense columnar liquid crystal

    Full text link
    An accurate description of a columnar liquid crystal of hard disks at high packing fractions is presented using an improved free-volume theory. It is shown that the orientational entropy of the disks in the one-dimensional fluid direction leads to a different high-density scaling pressure compared to the prediction from traditional cell theory. Excellent quantitative agreement is found with recent Monte-Carlo simulation results for various thermodynamic and structural properties of the columnar state.Comment: 4 pages, 2 figures, to appear in Phys. Rev. Let

    Dynamics of H2 Eley-Rideal abstraction from W(110): Sensitivity to the representation of the molecule-surface potential

    Get PDF
    Dynamics of the Eley-Rideal (ER) abstraction of H2 from W(110) is analyzed by means of quasi-classical trajectory calculations. Simulations are based on two different molecule-surface potential energy surfaces (PES) constructed from Density Functional Theory results. One PES is obtained by fitting, using a Flexible Periodic London-Eyring-Polanyi-Sato (FPLEPS) functional form, and the other by interpolation through the corrugation reducing procedure (CRP). Then, the present study allows us to elucidate the ER dynamics sensitivity on the PES representation. Despite some sizable discrepancies between both H+H/W(110) PESs, the obtained projectile-energy dependence of the total ER cross sections are qualitatively very similar ensuring that the main physical ingredients are captured in both PES models. The obtained distributions of the final energy among the different molecular degrees of freedom barely depend on the PES model, being most likely determined by the reaction exothermicity. Therefore, a reasonably good agreement with the measured final vibrational state distribution is observed in spite of the pressure and material gaps between theoretical and experimental conditions.Fil: Petuya, R.. Universite de Bordeaux; Francia. Centre National de la Recherche Scientifique. Institut des Sciences Moléculaires; FranciaFil: Larregaray, P.. Universite de Bordeaux; Francia. Centre National de la Recherche Scientifique. Institut des Sciences Moléculaires; FranciaFil: Crespos, C.. Universite de Bordeaux; Francia. Centre National de la Recherche Scientifique. Institut des Sciences Moléculaires; FranciaFil: Busnengo, Heriberto Fabio. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Rosario. Instituto de Física de Rosario (i); ArgentinaFil: Martinez, Alejandra Elisa. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Rosario. Instituto de Física de Rosario (i); Argentin

    Raman and Infra-red properties and layer dependence of the phonon dispersions in multi-layered graphene

    Full text link
    The symmetry group analysis is applied to classify the phonon modes of NN-stacked graphene layers (NSGL's) with AB- and AA-stacking, particularly their infra-red and Raman properties. The dispersions of various phonon modes are calculated in a multi-layer vibrational model, which is generalized from the lattice vibrational potentials of graphene to including the inter-layer interactions in NSGL's. The experimentally reported red shift phenomena in the layer number dependence of the intra-layer optical C-C stretching mode frequencies are interpreted. An interesting low frequency inter-layer optical mode is revealed to be Raman or Infra-red active in even or odd NSGL's respectively. Its frequency shift is sensitive to the layer number and saturated at about 10 layers.Comment: enlarged versio

    Thermo-statistical description of gas mixtures from space partitions

    Get PDF
    The new mathematical framework based on the free energy of pure classical fluids presented in [R. D. Rohrmann, Physica A 347, 221 (2005)] is extended to multi-component systems to determine thermodynamic and structural properties of chemically complex fluids. Presently, the theory focuses on DD-dimensional mixtures in the low-density limit (packing factor η<0.01\eta < 0.01). The formalism combines the free-energy minimization technique with space partitions that assign an available volume vv to each particle. vv is related to the closeness of the nearest neighbor and provides an useful tool to evaluate the perturbations experimented by particles in a fluid. The theory shows a close relationship between statistical geometry and statistical mechanics. New, unconventional thermodynamic variables and mathematical identities are derived as a result of the space division. Thermodynamic potentials μil\mu_{il}, conjugate variable of the populations NilN_{il} of particles class ii with the nearest neighbors of class ll are defined and their relationships with the usual chemical potentials μi\mu_i are established. Systems of hard spheres are treated as illustrative examples and their thermodynamics functions are derived analytically. The low-density expressions obtained agree nicely with those of scaled-particle theory and Percus-Yevick approximation. Several pair distribution functions are introduced and evaluated. Analytical expressions are also presented for hard spheres with attractive forces due to K\^ac-tails and square-well potentials. Finally, we derive general chemical equilibrium conditions.Comment: 14 pages, 8 figures. Accepted for publication in Physical Review

    Spectroscopy of free radicals and radical containing entrance-channel complexes in superfluid helium nano-droplets

    Get PDF
    The spectroscopy of free radicals and radical containing entrance-channel complexes embedded in superfluid helium nano-droplets is reviewed. The collection of dopants inside individual droplets in the beam represents a micro-canonical ensemble, and as such each droplet may be considered an isolated cryo-reactor. The unique properties of the droplets, namely their low temperature (0.4 K) and fast cooling rates (1016\sim10^{16} K s1^{-1}) provides novel opportunities for the formation and high-resolution studies of molecular complexes containing one or more free radicals. The production methods of radicals are discussed in light of their applicability for embedding the radicals in helium droplets. The spectroscopic studies performed to date on molecular radicals and on entrance / exit-channel complexes of radicals with stable molecules are detailed. The observed complexes provide new information on the potential energy surfaces of several fundamental chemical reactions and on the intermolecular interactions present in open-shell systems. Prospects of further experiments of radicals embedded in helium droplets are discussed, especially the possibilities to prepare and study high-energy structures and their controlled manipulation, as well as the possibility of fundamental physics experiments.Comment: 25 pages, 12 figures, 4 tables (RevTeX

    Mixed valency in cerium oxide crystallographic phases: Determination of valence of the different cerium sites by the bond valence method

    Get PDF
    We have applied the bond valence method to cerium oxides to determine the oxidation states of the Ce ion at the various site symmetries of the crystals. The crystals studied include cerium dioxide and the two sesquioxides along with some selected intermediate phases which are crystallographically well characterized. Our results indicate that cerium dioxide has a mixed-valence ground state with an f-electron population on the Ce site of 0.27 while both the A- and C-sesquioxides have a nearly pure f^1 configuration. The Ce sites in most of the intermediate oxides have non-integral valences. Furthermore, many of these valences are different from the values predicted from a naive consideration of the stoichiometric valence of the compound
    corecore