165 research outputs found
Electrical impedance tomography system: an open access circuit design
BACKGROUND: This paper reports a simple 2-D system for electrical impedance tomography EIT, which works efficiently and is low cost. The system has been developed in the Sharif University of Technology Tehran-Iran (for the author's MSc Project). METHODS: The EIT system consists of a PC in which an I/O card is installed with an external current generator, a multiplexer, a power supply and a phantom with an array of electrodes. The measurement system provides 12-bit accuracy and hence, suitable data acquisition software has been prepared accordingly. The synchronous phase detection method has been implemented for voltage measurement. Different methods of image reconstruction have been used with this instrument to generate electrical conductivity images. RESULTS: The results of simulation and real measurement of the system are presented. The reconstruction programs were written in MATLAB and the data acquisition software in C++. The system has been tested with both static and dynamic mode in a 2-D domain. Better results have been produced in the dynamic mode of operation, due to the cancellation of errors. CONCLUSION: In the spirit of open access publication the design details of this simple EIT system are made available here
Factor graph based detection approach for high-mobility OFDM systems with large FFT modes
In this article, a novel detector design is proposed for orthogonal frequency division multiplexing (OFDM) systems over frequency selective and time varying channels. Namely, we focus on systems with large OFDM symbol lengths where design and complexity constraints have to be taken into account and many of the existing ICI reduction techniques can not be applied. We propose a factor graph (FG) based approach for maximum a posteriori (MAP) symbol detection which exploits the frequency diversity introduced by the ICI in the OFDM symbol. The proposed algorithm provides high diversity orders allowing to outperform the free-ICI performance in high-mobility scenarios with an inherent parallel structure suitable for large OFDM block sizes. The performance of the mentioned near-optimal detection strategy is analyzed over a general bit-interleaved coded modulation (BICM) system applying low-density parity-check (LDPC) codes. The inclusion of pilot symbols is also considered in order to analyze how they assist the detection process
A high-performance 8 nV/root Hz 8-channel wearable and wireless system for real-time monitoring of bioelectrical signals
Background: It is widely accepted by the scientific community that bioelectrical signals, which can be used for the identification of neurophysiological biomarkers indicative of a diseased or pathological state, could direct patient treatment towards more effective therapeutic strategies. However, the design and realisation of an instrument that can precisely record weak bioelectrical signals in the presence of strong interference stemming from a noisy clinical environment is one of the most difficult challenges associated with the strategy of monitoring bioelectrical signals for diagnostic purposes. Moreover, since patients often have to cope with the problem of limited mobility being connected to bulky and mains-powered instruments, there is a growing demand for small-sized, high-performance and ambulatory biopotential acquisition systems in the Intensive Care Unit (ICU) and in High-dependency wards. Finally, to the best of our knowledge, there are no commercial, small, battery-powered, wearable and wireless recording-only instruments that claim the capability of recording electrocorticographic (ECoG) signals. Methods: To address this problem, we designed and developed a low-noise (8 nV/√Hz), eight-channel, battery-powered, wearable and wireless instrument (55 × 80 mm2). The performance of the realised instrument was assessed by conducting both ex vivo and in vivo experiments. Results: To provide ex vivo proof-of-function, a wide variety of high-quality bioelectrical signal recordings are reported, including electroencephalographic (EEG), electromyographic (EMG), electrocardiographic (ECG), acceleration signals, and muscle fasciculations. Low-noise in vivo recordings of weak local field potentials (LFPs), which were wirelessly acquired in real time using segmented deep brain stimulation (DBS) electrodes implanted in the thalamus of a non-human primate, are also presented. Conclusions: The combination of desirable features and capabilities of this instrument, namely its small size (~one business card), its enhanced recording capabilities, its increased processing capabilities, its manufacturability (since it was designed using discrete off-the-shelf components), the wide bandwidth it offers (0.5 – 500 Hz) and the plurality of bioelectrical signals it can precisely record, render it a versatile and reliable tool to be utilized in a wide range of applications and environments
The impact of surgical delay on resectability of colorectal cancer: An international prospective cohort study
Aim The SARS-CoV-2 pandemic has provided a unique opportunity to explore the impact of surgical delays on cancer resectability. This study aimed to compare resectability for colorectal cancer patients undergoing delayed versus non-delayed surgery. Methods This was an international prospective cohort study of consecutive colorectal cancer patients with a decision for curative surgery (January-April 2020). Surgical delay was defined as an operation taking place more than 4 weeks after treatment decision, in a patient who did not receive neoadjuvant therapy. A subgroup analysis explored the effects of delay in elective patients only. The impact of longer delays was explored in a sensitivity analysis. The primary outcome was complete resection, defined as curative resection with an R0 margin. Results Overall, 5453 patients from 304 hospitals in 47 countries were included, of whom 6.6% (358/5453) did not receive their planned operation. Of the 4304 operated patients without neoadjuvant therapy, 40.5% (1744/4304) were delayed beyond 4 weeks. Delayed patients were more likely to be older, men, more comorbid, have higher body mass index and have rectal cancer and early stage disease. Delayed patients had higher unadjusted rates of complete resection (93.7% vs. 91.9%, P = 0.032) and lower rates of emergency surgery (4.5% vs. 22.5%, P < 0.001). After adjustment, delay was not associated with a lower rate of complete resection (OR 1.18, 95% CI 0.90-1.55, P = 0.224), which was consistent in elective patients only (OR 0.94, 95% CI 0.69-1.27, P = 0.672). Longer delays were not associated with poorer outcomes. Conclusion One in 15 colorectal cancer patients did not receive their planned operation during the first wave of COVID-19. Surgical delay did not appear to compromise resectability, raising the hypothesis that any reduction in long-term survival attributable to delays is likely to be due to micro-metastatic disease
Correlation analysis of the transcriptome of growing leaves with mature leaf parameters in a maize RIL population
The EIT-based global inhomogeneity index is highly correlated with regional lung opening in patients with acute respiratory distress syndrome
Late Miocene K-rich volcanism in the Eslamieh Peninsula (Saray), NW Iran: Implications for geodynamic evolution of the Turkish–Iranian High Plateau
Post-collisional volcanism in northwestern Iran is represented by the Saray high-K rocks including leucite-bearing under-saturated and leucite-free silica saturated rocks. We report Ar–Ar age data which constrain the age as ca. 11Ma (lateMiocene).Most of clinopyroxene phenocrysts fromthe volcanic rocks have complex oscillatory zoning, with high Ti and Al cores, low Ti and high Almantled clinopyroxenes, grading into lowTi and Al outer rims. All the rocks are highly enriched in incompatible trace elements and have identical Sr–Nd–Pb isotopes. Enrichment in incompatible elements and other geochemical features for the Saray lavas suggest a metasomatized subcontinental lithospheric mantle (SCLM) as the magma source. The negative Nb–Ta–Ti anomalies for the Saray lavas compare with the features of subduction-related magmatism with negligible contamination with ancient crustal components. The highly radiogenic 87Sr/86Sr and 207Pb/204Pb isotopic values of the Saray lavas imply the involvement of slab terrigenous sediments and/or a continental lithosphere. Isotopically, the volcanic rocks define a binary trend, representing 5–8% mixing between the primary mantle and sediment melts. Our melting models suggest residual garnet in the source and are incompatible with partial melting of amphibole and/or phlogopite bearing lherzolites, although the complex geochemical features might indicate the result of mixing between melts produced by different sources or a homogenous melt passing through a compositionally-zoned mantle during multiple stages of partial melting and melt migration. The geochronological, geochemical and isotopic data for the Saray rocks suggest that these Late Miocene magmas were derived from a small degree of partial melting of subduction-metasomatized (subcontinental) lithospheric mantle source in a post-collisional setting
Assessment of theory of mind and empathy skills of typically developing siblings of children diagnosed with autism spectrum disorder
Polyunsaturated fat intake and mortality in non-statin users: Is there an independent relationship?
- …
