3,119 research outputs found

    Massive-Conformal Dictionary

    Full text link
    The finite-volume spectrum of an integrable massive perturbation of a rational conformal field theory interpolates between massive multi-particle states in infinite volume (IR limit) and conformal states, which are approached at zero volume (UV limit). Each state is labeled in the IR by a set of `Bethe Ansatz quantum numbers', while in the UV limit it is characterized primarily by the conformal dimensions of the conformal field creating it. We present explicit conjectures for the UV conformal dimensions corresponding to any IR state in the ϕ1,3\phi_{1,3}-perturbed minimal models M(2,5)M(2,5) and M(3,5)M(3,5). The conjectures, which are based on a combinatorial interpretation of the Rogers-Ramanujan-Schur identities, are consistent with numerical results obtained previously for low-lying energy levels.Comment: 18/11 pages in harvmac, Tel-Aviv preprint TAUP 2109/9

    Spectral methods in time for hyperbolic equations

    Get PDF
    A pseudospectral numerical scheme for solving linear, periodic, hyperbolic problems is described. It has infinite accuracy both in time and in space. The high accuracy in time is achieved without increasing the computational work and memory space which is needed for a regular, one step explicit scheme. The algorithm is shown to be optimal in the sense that among all the explicit algorithms of a certain class it requires the least amount of work to achieve a certain given resolution. The class of algorithms referred to consists of all explicit schemes which may be represented as a polynomial in the spatial operator

    Sine-Gordon =/= Massive Thirring, and Related Heresies

    Full text link
    By viewing the Sine-Gordon and massive Thirring models as perturbed conformal field theories one sees that they are different (the difference being observable, for instance, in finite-volume energy levels). The UV limit of the former (SGM) is a gaussian model, that of the latter (MTM) a so-called {\it fermionic} gaussian model, the compactification radius of the boson underlying both theories depending on the SG/MT coupling. (These two families of conformal field theories are related by a ``twist''.) Corresponding SG and MT models contain a subset of fields with identical correlation functions, but each model also has fields the other one does not, e.g. the fermion fields of MTM are not contained in SGM, and the {\it bosonic} soliton fields of SGM are not in MTM. Our results imply, in particular, that the SGM at the so-called ``free-Dirac point'' β2=4π\beta^2 = 4\pi is actually a theory of two interacting bosons with diagonal S-matrix S=1S=-1, and that for arbitrary couplings the overall sign of the accepted SG S-matrix in the soliton sector should be reversed. More generally, we draw attention to the existence of new classes of quantum field theories, analogs of the (perturbed) fermionic gaussian models, whose partition functions are invariant only under a subgroup of the modular group. One such class comprises ``fermionic versions'' of the Virasoro minimal models.Comment: 50 pages (harvmac unreduced), CLNS-92/1149, ITP-SB-92-3

    The eigenvalues of the pseudospectral Fourier approximation to the operator sin (2x) d/dx

    Get PDF
    It is shown that the eigenvalues Z sub i of the pseudospectral Fourier approximation to the operator sin(2x) curly d/curly dx satisfy (R sub e) (Z sub i) = + or - 1 or (R sub e)(Z sub I) = 0. Whereas this does not prove stability for the Fourier method, applied to the hyperbolic equation U sub t = sin (2x)(U sub x) - pi x pi; it indicates that the growth in time of the numerical solution is essentially the same as that of the solution to the differential equation

    High degree interpolation polynomial in Newton form

    Get PDF
    Polynomial interpolation is an essential subject in numerical analysis. Dealing with a real interval, it is well known that even if f(x) is an analytic function, interpolating at equally spaced points can diverge. On the other hand, interpolating at the zeroes of the corresponding Chebyshev polynomial will converge. Using the Newton formula, this result of convergence is true only on the theoretical level. It is shown that the algorithm which computes the divided differences is numerically stable only if: (1) the interpolating points are arranged in a different order, and (2) the size of the interval is 4

    New, Highly Accurate Propagator for the Linear and Nonlinear Schr\"odinger Equation

    Full text link
    A propagation method for the time dependent Schr\"odinger equation was studied leading to a general scheme of solving ode type equations. Standard space discretization of time-dependent pde's usually results in system of ode's of the form u_t -Gu = s where G is a operator (matrix) and u is a time-dependent solution vector. Highly accurate methods, based on polynomial approximation of a modified exponential evolution operator, had been developed already for this type of problems where G is a linear, time independent matrix and s is a constant vector. In this paper we will describe a new algorithm for the more general case where s is a time-dependent r.h.s vector. An iterative version of the new algorithm can be applied to the general case where G depends on t or u. Numerical results for Schr\"odinger equation with time-dependent potential and to non-linear Schr\"odinger equation will be presented.Comment: 14 page
    corecore