104,467 research outputs found

    Fludarabine as a cost-effective adjuvant to enhance engraftment of human normal and malignant hematopoiesis in immunodeficient mice

    Get PDF
    There is still an unmet need for xenotransplantation models that efficiently recapitulate normal and malignant human hematopoiesis. Indeed, there are a number of strategies to generate humanized mice and specific protocols, including techniques to optimize the cytokine environment of recipient mice and drug alternatives or complementary to the standard conditioning regimens, that can be significantly modulated. Unfortunately, the high costs related to the use of sophisticated mouse models may limit the application of these models to studies that require an extensive experimental design. Here, using an affordable and convenient method, we demonstrate that the administration of fludarabine (FludaraTM) promotes the extensive and rapid engraftment of human normal hematopoiesis in immunodeficient mice. Quantification of human CD45+ cells in bone marrow revealed approximately a 102-fold increase in mice conditioned with irradiation plus fludarabine. Engrafted cells in the bone marrow included hematopoietic stem cells, as well as myeloid and lymphoid cells. Moreover, this model proved to be sufficient for robust reconstitution of malignant myeloid hematopoiesis, permitting primary acute myeloid leukemia cells to engraft as early as 8 weeks after the transplant. Overall, these results present a novel and affordable model for engraftment of human normal and malignant hematopoiesis in immunodeficient mice

    Treatment responses to antiangiogenetic therapy and chemotherapy in nonsecreting paraganglioma (PGL4) of urinary bladder with SDHB mutation: a case report

    Get PDF
    Paraganglioma (PGL) is a rare neuroendocrine tumor. Currently, the malignancy is defined as the presence of metastatic spread at presentation or during follow-up. Several gene mutations are listed in the pathogenesis of PGL, among which succinate dehydrogenase (SDHX), particularly the SDHB isoform, is the main gene involved in malignancy. A 55-year-old male without evidence of catecholamine secretion had surgery for PGL of the urinary bladder. After 1 year, he showed a relapse of disease and demonstrated malignant PGL without evidence of catecholamine secretion with a germline heterozygous mutation of succinate dehydrogenase B (SDHB). After failure of a second surgery for relapse, he started medical treatment with sunitinib daily but discontinued due to serious side effects. Cyclophosphamide, vincristine, and dacarbazine (CVD) chemotherapeutic regimen stopped the disease progression for 7 months. Conclusion: Malignant PGL is a very rare tumor, and SDHB mutations must be always considered in molecular diagnosis because they represent a critical event in the progression of the oncological disease. Currently, there are few therapeutic protocols, and it is often difficult, as this case demonstrates, to decide on a treatment option according to a reasoned set of choices. Abbreviations: CVD = cyclophosphamide, vincristine and dacarbazine, HIF-1a = hypoxia inducible factor 1 alpha, PGL = paraganglioma, SDH = succinate dehydrogenase, VEGF = vasoendothelial growth factor

    Methylglyoxal-dependent glycative stress and deregulation of SIRT1 functional network in the ovary of PCOS mice

    Get PDF
    Advanced glycation end-products (AGEs) are involved in the pathogenesis and consequences of polycystic ovary syndrome (PCOS), a complex metabolic disorder associated with female infertility. The most powerful AGE precursor is methylglyoxal (MG), a byproduct of glycolysis, that is detoxified by the glyoxalase system. By using a PCOS mouse model induced by administration of dehydroepiandrosterone (DHEA), we investigated whether MG-dependent glycative stress contributes to ovarian PCOS phenotype and explored changes in the Sirtuin 1 (SIRT1) functional network regulating mitochondrial functions and cell survival. In addition to anovulation and reduced oocyte quality, DHEA ovaries revealed altered collagen deposition, increased vascularization, lipid droplets accumulation and altered steroidogenesis. Here we observed increased intraovarian MG-AGE levels in association with enhanced expression of receptor for AGEs (RAGEs) and deregulation of the glyoxalase system, hallmarks of glycative stress. Moreover, DHEA mice exhibited enhanced ovarian expression of SIRT1 along with increased protein levels of SIRT3 and superoxide dismutase 2 (SOD2), and decreased peroxisome proliferator-activated receptor gamma co-activator 1 alpha (PGC1 alpha), mitochondrial transcriptional factor A (mtTFA) and translocase of outer mitochondrial membrane 20 (TOMM20). Finally, the presence of autophagy protein markers and increased AMP-activated protein kinase (AMPK) suggested the involvement of SIRT1/AMPK axis in autophagy activation. Overall, present findings demonstrate that MG-dependent glycative stress is involved in ovarian dysfunctions associated to PCOS and support the hypothesis of a SIRT1-dependent adaptive response

    Observation of the Nernst signal generated by fluctuating Cooper pairs

    Full text link
    Long-range order is destroyed in a superconductor warmed above its critical temperature (Tc). However, amplitude fluctuations of the superconducting order parameter survive and lead to a number of well established phenomena such as paraconductivity : an excess of charge conductivity due to the presence of short-lived Cooper pairs in the normal state. According to an untested theory, these pairs generate a transverse thermoelectric (Nernst) signal. In amorphous superconducting films, the lifetime of Cooper pairs exceeds the elastic lifetime of quasi-particles in a wide temperature range above Tc; consequently, the Cooper pairs Nernst signal dominate the response of the normal electrons well above Tc. In two dimensions, the magnitude of the expected signal depends only on universal constants and the superconducting coherence length, so the theory can be unambiguously tested. Here, we report on the observation of a Nernst signal in such a superconductor traced deep into the normal state. Since the amplitude of this signal is in excellent agreement with the theoretical prediction, the result provides the first unambiguous case for a Nernst effect produced by short-lived Cooper pairs

    Gas accretion as the origin of chemical abundance gradients in distant galaxies

    Full text link
    It has recently been suggested that galaxies in the early Universe can grow through the accretion of cold gas, and that this may have been the main driver of star formation and stellar mass growth. Because the cold gas is essentially primordial, it has a very low abundance of elements heavier than helium (metallicity). As it is funneled to the centre of a galaxy, it will lead the central gas having an overall lower metallicity than gas further from the centre, because the gas further out has been enriched by supernovae and stellar winds, and not diluted by the primordial gas. Here we report chemical abundances across three rotationally-supported star-forming galaxies at z~3, only 2 Gyr after the Big Bang. We find an 'inverse' gradient, with the central, star forming regions having a lower metallicity than less active ones, opposite to what is seen in local galaxies. We conclude that the central gas has been diluted by the accretion of primordial gas, as predicted by 'cold flow' models.Comment: To Appear in Nature Oct 14, 2010; Supplementary Information included her

    Impaired Competence for Pretense in Children with Autism: Exploring Potential Cognitive Predictors.

    Get PDF
    Lack of pretense in children with autism has been explained by a number of theoretical explanations, including impaired mentalising, impaired response inhibition, and weak central coherence. This study aimed to empirically test each of these theories. Children with autism (n=60) were significantly impaired relative to controls (n=65) when interpreting pretense, thereby supporting a competence deficit hypothesis. They also showed impaired mentalising and response inhibition, but superior local processing indicating weak central coherence. Regression analyses revealed that mentalising significantly and independently predicted pretense. The results are interpreted as supporting the impaired mentalising theory and evidence against competing theories invoking impaired response inhibition or a local processing bias. The results of this study have important implications for treatment and intervention

    A call for policy guidance on psychometric testing in doping control in sport.

    Get PDF
    One of the fundamental challenges in anti-doping is identifying athletes who use, or are at risk of using, prohibited performance enhancing substances. The growing trend to employ a forensic approach to doping control aims to integrate information from social sciences (e.g., psychology of doping) into organised intelligence to accelerate the pursuit of clean sport. Beyond the foreseeable consequences of a positive identification as a doping user, this task is further complicated by the discrepancy between what constitutes a doping offence in the World Anti-Doping Code and operationalized in doping research. Whilst psychology plays an important role in developing our understanding of doping behaviour in order to inform intervention and prevention, its contribution to the array of doping diagnostic tools is still in its infancy. At the same time, we must acknowledge that socially desirable responding confounds self-reported psychometric test results. Further, the cognitive complexity surrounding test performance means that the response-time based measures and the lie detector tests for revealing concealed life-events (e.g., doping use) are prone to produce false or non-interpretable outcomes in field settings. Differences in social-cognitive characteristics of doping behaviour that are tested at group level (doping users vs. non-users) cannot be extrapolated to individuals; nor these psychometric measures used for individual diagnostics. In this paper, we present a position statement calling for policy guidance on appropriate use of psychometric assessments in the pursuit of clean sport. We argue that both self-reported and response-time based psychometric tests for doping have been designed, tested and validated to explore how athletes feel and think about doping in order to develop a better understanding of doping behaviour, not to establish evidence for doping. A false 'positive' psychological profile for doping (or even failing to produce a definite negative profile) affects not only the individual ‘clean’ athlete but also their entourage, their organisation and sport itself. The proposed policy guidance aims to protect the global athletic community against social, ethical and legal consequences from potential misuse of psychological tests, including applications as forensic diagnostic tools in both practice and research

    Dynamical Axion Field in Topological Magnetic Insulators

    Full text link
    Axions are very light, very weakly interacting particles postulated more than 30 years ago in the context of the Standard Model of particle physics. Their existence could explain the missing dark matter of the universe. However, despite intensive searches, they have yet to be detected. In this work, we show that magnetic fluctuations of topological insulators couple to the electromagnetic fields exactly like the axions, and propose several experiments to detect this dynamical axion field. In particular, we show that the axion coupling enables a nonlinear modulation of the electromagnetic field, leading to attenuated total reflection. We propose a novel optical modulators device based on this principle.Comment: 5 pages, 3 figure
    corecore