8,846 research outputs found

    Vacuum Cerenkov Radiation in Lorentz-Violating Theories Without CPT Violation

    Get PDF
    In theories with broken Lorentz symmetry, Cerenkov radiation may be possible even in vacuum. We analyze the Cerenkov emissions that are associated with the least constrained Lorentz-violating modifications of the photon sector, calculating the threshold energy, the frequency spectrum, and the shape of the Mach cone. In order to obtain sensible results for the total power emitted, we must make use of information contained within the theory which indicates at what scale new physics must enter.Comment: 9 page

    Statistical Time Series Models of Pilot Control with Applications to Instrument Discrimination

    Get PDF
    A general description of the methodology used in obtaining the transfer function models and verification of model fidelity, frequency domain plots of the modeled transfer functions, numerical results obtained from an analysis of poles and zeroes obtained from z plane to s-plane conversions of the transfer functions, and the results of a study on the sequential introduction of other variables, both exogenous and endogenous into the loop are contained

    Lorentz Violation and Synchrotron Radiation

    Full text link
    We consider the radiation emitted by an ultrarelativistic charged particle moving in a magnetic field, in the presence of an additional Lorentz-violating interaction. In contrast with prior work, we treat a form of Lorentz violation that is represented by a renormalizable operator. Neglecting the radiative reaction force, the particle's trajectory can be determined exactly. The resulting orbit is generally noncircular and does not lie in the place perpendicular to the magnetic field. We do not consider any Lorentz violation in the electromagnetic sector, so the radiation from the accelerated charge can be determined by standard means, and the radiation spectrum will exhibit a Lorentz-violating directional dependence. Using data on emission from the Crab nebula, we can set a bound on a particular combination of Lorentz-violating coefficients at the 6×10206\times10^{-20} level.Comment: 14 page

    Cerenkov Radiation in a Lorentz-Violating and Birefringent Vacuum

    Get PDF
    We calculate the emission spectrum for vacuum Cerenkov radiation in Lorentz-violating extensions of electrodynamics. We develop an approach that works equally well if the presence or the absence of birefringence. In addition to confirming earlier work, we present the first calculation relevant to Cerenkov radiation in the presence of a birefringent photon k_F term, calculating the lower-energy part of the spectrum for that case.Comment: 17 pages, version to appear in Phys. Rev.

    Limits on Neutron Lorentz Violation from the Stability of Primary Cosmic Ray Protons

    Full text link
    Recent evidence appears to confirm that the ultra-high-energy primary cosmic ray spectrum consists mostly of protons. The fact that these protons can traverse large distances to reach Earth allows us to place bounds on Lorentz violations. The protons neither emit vacuum Cerenkov radiation nor β\beta-decay into neutrons, and this constrains six previously unmeasured coefficients in the neutron sector at the 5 x 10^(-14) level. Among the coefficients bounded here for the first time are those that control spin-independent boost anisotropy for neutrons. This is a phenomenon which could have existed (in light of the preexisting bounds) without additional fine tuning. There are also similar bounds for others species of hadrons. The bounds on Lorentz violation for neutral pions are particularly strong, at the 4 x 10^(-21) level, eleven orders of magnitude better than previous constraints.Comment: 13 pages, version to appear in Phys. Rev.

    Bounds on Spin-Dependent Lorentz Violation From Inverse Compton Observations

    Get PDF
    Some of the best bounds on possible Lorentz violation in the electron sector come from observations of high-energy astrophysical phenomena. Using measurements of TeV inverse Compton radiation from a number of sources, we place the first bounds--at the 10^(-15) level--on seven of the electron d coefficients.Comment: 10 page

    CPT and Lorentz violation as signatures for Planck-scale physics

    Full text link
    In recent years, the breakdown of spacetime symmetries has been identified as a promising research field in the context of Planck-scale phenomenology. For example, various theoretical approaches to the quantum-gravity problem are known to accommodate minute violations of CPT invariance. This talk covers various topics within this research area. In particular, some mechanisms for spacetime-symmetry breaking as well as the Standard-Model Extension (SME) test framework will be reviewed; the connection between CPT and Lorentz invariance in quantum field theory will be exposed; and various experimental CPT tests with emphasis on matter--antimatter comparisons will be discussed.Comment: 6 page

    Laboratory Bounds on Electron Lorentz Violation

    Get PDF
    Violations of Lorentz boost symmetry in the electron and photon sectors can be constrained by studying several different high-energy phenomenon. Although they may not lead to the strongest bounds numerically, measurements made in terrestrial laboratories produce the most reliable results. Laboratory bounds can be based on observations of synchrotron radiation, as well as the observed absences of vacuum Cerenkov radiation. Using measurements of synchrotron energy losses at LEP and the survival of TeV photons, we place new bounds on the three electron Lorentz violation coefficients c_(TJ), at the 3 x 10^(-13) to 6 x 10^(-15) levels.Comment: 18 page

    Synchrotron and Inverse Compton Constraints on Lorentz Violations for Electrons

    Get PDF
    We present a method for constraining Lorentz violation in the electron sector, based on observations of the photons emitted by high-energy astrophysical sources. The most important Lorentz-violating operators at the relevant energies are parameterized by a tensor c^{nu mu) with nine independent components. If c is nonvanishing, then there may be either a maximum electron velocity less than the speed of light or a maximum energy for subluminal electrons; both these quantities will generally depend on the direction of an electron's motion. From synchrotron radiation, we may infer a lower bound on the maximum velocity, and from inverse Compton emission, a lower bound on the maximum subluminal energy. With observational data for both these types of emission from multiple celestial sources, we may then place bounds on all nine of the coefficients that make up c. The most stringent bound, on a certain combination of the coefficients, is at the 6 x 10^(-20) level, and bounds on the coefficients individually range from the 7 x 10^(-15) level to the 2 x 10^(-17) level. For most of the coefficients, these are the most precise bounds available, and with newly available data, we can already improve over previous bounds obtained by the same methods.Comment: 28 page

    Interpreting OPERA results on superluminal neutrino

    Full text link
    OPERA has claimed the discovery of superluminal propagation of neutrinos. We analyze the consistency of this claim with previous tests of special relativity. We find that reconciling the OPERA measurement with information from SN1987a and from neutrino oscillations requires stringent conditions. The superluminal limit velocity of neutrinos must be nearly flavor independent, must decrease steeply in the low-energy domain, and its energy dependence must depart from a simple power law. We construct illustrative models that satisfy these conditions, by introducing Lorentz violation in a sector with light sterile neutrinos. We point out that, quite generically, electroweak quantum corrections transfer the information of superluminal neutrino properties into Lorentz violations in the electron and muon sector, in apparent conflict with experimental data.Comment: 21 pages, 4 figures. Final version to appear on NPB. The electroweak corrections that transfer Lorentz violation from neutrinos to electrons have now been computed finding a result in agreement with the estimate in the first version of the pape
    corecore