5,283 research outputs found
Can Effects of Dark Matter be Explained by the Turbulent Flow of Spacetime?
For the past forty years the search for dark matter has been one of the
primary foci of astrophysics, although there has yet to be any direct evidence
for its existence (Porter et al. 2011). Indirect evidence for the existence of
dark matter is largely rooted in the rotational speeds of stars within their
host galaxies, where, instead of having a ~ r^1/2 radial dependence, stars
appear to have orbital speeds independent of their distance from the galactic
center, which led to proposed existence of dark matter (Porter et al. 2011;
Peebles 1993). We propose an alternate explanation for the observed stellar
motions within galaxies, combining the standard treatment of a fluid-like
spacetime with the possibility of a "bulk flow" of mass through the Universe.
The differential "flow" of spacetime could generate vorticies capable of
providing the "perceived" rotational speeds in excess of those predicted by
Newtonian mechanics. Although a more detailed analysis of our theory is
forthcoming, we find a crude "order of magnitude" calculation can explain this
phenomena. We also find that this can be used to explain the graviational
lensing observed around globular clusters like "Bullet Cluster".Comment: 5 pages, Accepted for publication in Journal of Modern Physics:
Gravitation and Cosmology (Sept. 2012
Black holes and wormholes subject to conformal mappings
Solutions of the field equations of theories of gravity which admit distinct
conformal frame representations can look very different in these frames. We
show that Brans class IV solutions describe wormholes in the Jordan frame (in a
certain parameter range) but correspond to horizonless geometries in the
Einstein frame. The reasons for such a change of behaviour under conformal
mappings are elucidated in general, using Brans IV solutions as an example.Comment: 7 pages, 2 figure
An electromyographic comparison of neck conditioning exercises in healthy controls
The purpose of this study was to compare surface electromyography (EMG) activation levels of selected neck muscles for two common neck-training modalities (Thera-Band and Cybex). Seventeen asymptomatic subjects (eight men and nine women) with a mean age 23.4 years were recruited. EMG activation normalized to maximal voluntary isometric contraction (MVIC) was measured with subjects performing exercises with green, blue, and black Thera-Bands and 50%, 70%, and 90% of 3RM for the Cybex modality. Four variables were used to depict exercise intensity: average and peak EMG activation in the concentric and eccentric phases. Significant differences (P <= 0.05) in EMG activation were evident when comparing intensities of the Cybex modality with each other and when comparing the Cybex intensities with Thera-Band intensities in most cases. Minimal differences were found among differing intensities of Thera-Band. Thera-Band exercise resulted in low-level EMG activation (range, flexion 3.8-15.7% MVIC; range, extension 20.2-34.8% MVIC); therefore, such exercise may be useful in rehabilitation programs. Cybex exercise (range, flexion 20.9-83.5% MVIC; range, extension 40.6-95.8% MVIC) may be useful for occupation-related injury prevention. However, exercise prescription should be undertaken with care as the mechanical loading on passive spinal structures is unknown.<br /
Polar ring galaxies as tests of gravity
Polar ring galaxies are ideal objects with which to study the
three-dimensional shapes of galactic gravitational potentials since two
rotation curves can be measured in two perpendicular planes. Observational
studies have uncovered systematically larger rotation velocities in the
extended polar rings than in the associated host galaxies. In the dark matter
context, this can only be explained through dark halos that are systematically
flattened along the polar rings. Here, we point out that these objects can also
be used as very effective tests of gravity theories, such as those based on
Milgromian dynamics (MOND). We run a set of polar ring models using both
Milgromian and Newtonian dynamics to predict the expected shapes of the
rotation curves in both planes, varying the total mass of the system, the mass
of the ring with respect to the host, as well as the size of the hole at the
center of the ring. We find that Milgromian dynamics not only naturally leads
to rotation velocities being typically higher in the extended polar rings than
in the hosts, as would be the case in Newtonian dynamics without dark matter,
but that it also gets the shape and amplitude of velocities correct. Milgromian
dynamics thus adequately explains this particular property of polar ring
galaxies.Comment: 9 pages, 8 Figures, 1 Table, Accepted for publication by MNRA
Neck exercises compared to muscle activation during aerial combat maneuvers
Introduction: Performing specific neck strengthening exercises has been proposed to decrease the incidence of neck injury and pain in high performance combat pilots. However, there is little known about these exercises in comparison to the demands on the neck musculature in flight. Methods: Eight male non-pilots performed specific neck exercises using two different modalities (elastic band and resistance machine) at six different intensities in flexion, extension, and lateral bending. Six Royal Australian Air Force Hawk pilots flew a sortie that included combinations of three +Gz levels and four head positions. Surface electromyography (EMG) from selected neck and shoulder muscles was recorded in both activities. Results: Muscle activation levels recorded during the three elastic band exercises were similar to in-flight EMG collected at +1 Gz (15% MVIC). EMG levels elicited during the 50% resistance machine exercises were between the +3 Gz (9-40% MVIC) and +5 Gz (16-53% MVIC) ranges of muscle activations in most muscles. EMG recorded during 70% and 90% resistance machine exercises were generally higher than in-flight EMG at +5 Gz. Discussion: Elastic band exercises could possibly be useful to pilots who fly low +Gz missions while 50% resistance machine mimicked neck loads experienced by combat pilots flying high +Gz ACM. The 70% and 90% resistance machine intensities are known to optimize maximal strength but should be administered with care because of the unknown spinal loads and diminished muscle force generating capacity after exercise.<br /
Electroweak Theory Without Higgs Bosons
A perturbative SU(2)_L X U(1)_Y electroweak theory containing W, Z, photon,
ghost, lepton and quark fields, but no Higgs or other fields, gives masses to
W, Z and the non-neutrino fermions by means of an unconventional choice for the
unperturbed Lagrangian and a novel method of renormalisation. The
renormalisation extends to all orders. The masses emerge on renormalisation to
one loop. To one loop the neutrinos are massless, the A -> Z transition drops
out of the theory, the d quark is unstable and S-matrix elements are
independent of the gauge parameter xi.Comment: 27 pages, LaTex, no figures; revised for publication; accepted by
Int. J. Mod. Phys. A; includes biographical note on A. F. Nicholso
Virus satellites drive viral evolution and ecology
Virus satellites are widespread subcellular entities, present both in eukaryotic and in prokaryotic cells. Their modus vivendi involves parasitism of the life cycle of their inducing helper viruses, which assures their transmission to a new host. However, the evolutionary and ecological implications of satellites on helper viruses remain unclear. Here, using staphylococcal pathogenicity islands (SaPIs) as a model of virus satellites, we experimentally show that helper viruses rapidly evolve resistance to their virus satellites, preventing SaPI proliferation, and SaPIs in turn can readily evolve to overcome phage resistance. Genomic analyses of both these experimentally evolved strains as well as naturally occurring bacteriophages suggest that the SaPIs drive the coexistence of multiple alleles of the phage-coded SaPI inducing genes, as well as sometimes selecting for the absence of the SaPI depressing genes. We report similar (accidental) evolution of resistance to SaPIs in laboratory phages used for Staphylococcus aureus typing and also obtain the same qualitative results in both experimental evolution and phylogenetic studies of Enterococcus faecalis phages and their satellites viruses. In summary, our results suggest that helper and satellite viruses undergo rapid coevolution, which is likely to play a key role in the evolution and ecology of the viruses as well as their prokaryotic hosts
Lopsidedness of cluster galaxies in modified gravity
We point out an interesting theoretical prediction for elliptical galaxies
residing inside galaxy clusters in the framework of modified Newtonian dynamics
(MOND), that could be used to test this paradigm. Apart from the central
brightest cluster galaxy, other galaxies close enough to the centre experience
a strong gravitational influence from the other galaxies of the cluster. This
influence manifests itself only as tides in standard Newtonian gravity, meaning
that the systematic acceleration of the centre of mass of the galaxy has no
consequence. However, in the context of MOND, a consequence of the breaking of
the strong equivalence principle is that the systematic acceleration changes
the own self-gravity of the galaxy. We show here that, in this framework,
initially axisymmetric elliptical galaxies become lopsided along the external
field's direction, and that the centroid of the galaxy, defined by the outer
density contours, is shifted by a few hundreds parsecs with respect to the
densest point.Comment: accepted for publication in JCA
- …
