874 research outputs found
Relative periodic orbits in point vortex systems
We give a method to determine relative periodic orbits in point vortex
systems: it consists mainly into perform a symplectic reduction on a fixed
point submanifold in order to obtain a two-dimensional reduced phase space. The
method is applied to point vortices systems on a sphere and on the plane, but
works for other surfaces with isotropy (cylinder, ellipsoid, ...). The method
permits also to determine some relative equilibria and heteroclinic cycles
connecting these relative equilibria.Comment: 27 pages, 17 figure
Bounds on the Sum Capacity of Synchronous Binary CDMA Channels
In this paper, we obtain a family of lower bounds for the sum capacity of
Code Division Multiple Access (CDMA) channels assuming binary inputs and binary
signature codes in the presence of additive noise with an arbitrary
distribution. The envelope of this family gives a relatively tight lower bound
in terms of the number of users, spreading gain and the noise distribution. The
derivation methods for the noiseless and the noisy channels are different but
when the noise variance goes to zero, the noisy channel bound approaches the
noiseless case. The behavior of the lower bound shows that for small noise
power, the number of users can be much more than the spreading gain without any
significant loss of information (overloaded CDMA). A conjectured upper bound is
also derived under the usual assumption that the users send out equally likely
binary bits in the presence of additive noise with an arbitrary distribution.
As the noise level increases, and/or, the ratio of the number of users and the
spreading gain increases, the conjectured upper bound approaches the lower
bound. We have also derived asymptotic limits of our bounds that can be
compared to a formula that Tanaka obtained using techniques from statistical
physics; his bound is close to that of our conjectured upper bound for large
scale systems.Comment: to be published in IEEE Transactions on Information Theor
Point vortices on the sphere: a case with opposite vorticities
We study systems formed of 2N point vortices on a sphere with N vortices of
strength +1 and N vortices of strength -1. In this case, the Hamiltonian is
conserved by the symmetry which exchanges the positive vortices with the
negative vortices. We prove the existence of some fixed and relative
equilibria, and then study their stability with the ``Energy Momentum Method''.
Most of the results obtained are nonlinear stability results. To end, some
bifurcations are described.Comment: 35 pages, 9 figure
Excitable media in open and closed chaotic flows
We investigate the response of an excitable medium to a localized
perturbation in the presence of a two-dimensional smooth chaotic flow. Two
distinct types of flows are numerically considered: open and closed. For both
of them three distinct regimes are found, depending on the relative strengths
of the stirring and the rate of the excitable reaction. In order to clarify and
understand the role of the many competing mechanisms present, simplified models
of the process are introduced. They are one-dimensional baker-map models for
the flow and a one-dimensional approximation for the transverse profile of the
filaments.Comment: 14 pages, 16 figure
Measuring Topological Chaos
The orbits of fluid particles in two dimensions effectively act as
topological obstacles to material lines. A spacetime plot of the orbits of such
particles can be regarded as a braid whose properties reflect the underlying
dynamics. For a chaotic flow, the braid generated by the motion of three or
more fluid particles is computed. A ``braiding exponent'' is then defined to
characterize the complexity of the braid. This exponent is proportional to the
usual Lyapunov exponent of the flow, associated with separation of nearby
trajectories. Measuring chaos in this manner has several advantages, especially
from the experimental viewpoint, since neither nearby trajectories nor
derivatives of the velocity field are needed.Comment: 4 pages, 6 figures. RevTeX 4 with PSFrag macro
Offsprings of a point vortex
The distribution engendered by successive splitting of one point vortex are
considered. The process of splitting a vortex in three using a reverse
three-point vortex collapse course is analysed in great details and shown to be
dissipative. A simple process of successive splitting is then defined and the
resulting vorticity distribution and vortex populations are analysed
Enhanced tracer transport by the spiral defect chaos state of a convecting fluid
To understand how spatiotemporal chaos may modify material transport, we use
direct numerical simulations of the three-dimensional Boussinesq equations and
of an advection-diffusion equation to study the transport of a passive tracer
by the spiral defect chaos state of a convecting fluid. The simulations show
that the transport is diffusive and is enhanced by the spatiotemporal chaos.
The enhancement in tracer diffusivity follows two regimes. For large Peclet
numbers (that is, small molecular diffusivities of the tracer), we find that
the enhancement is proportional to the Peclet number. For small Peclet numbers,
the enhancement is proportional to the square root of the Peclet number. We
explain the presence of these two regimes in terms of how the local transport
depends on the local wave numbers of the convection rolls. For large Peclet
numbers, we further find that defects cause the tracer diffusivity to be
enhanced locally in the direction orthogonal to the local wave vector but
suppressed in the direction of the local wave vector.Comment: 11 pages, 12 figure
- …
