874 research outputs found

    Relative periodic orbits in point vortex systems

    Full text link
    We give a method to determine relative periodic orbits in point vortex systems: it consists mainly into perform a symplectic reduction on a fixed point submanifold in order to obtain a two-dimensional reduced phase space. The method is applied to point vortices systems on a sphere and on the plane, but works for other surfaces with isotropy (cylinder, ellipsoid, ...). The method permits also to determine some relative equilibria and heteroclinic cycles connecting these relative equilibria.Comment: 27 pages, 17 figure

    Bounds on the Sum Capacity of Synchronous Binary CDMA Channels

    Full text link
    In this paper, we obtain a family of lower bounds for the sum capacity of Code Division Multiple Access (CDMA) channels assuming binary inputs and binary signature codes in the presence of additive noise with an arbitrary distribution. The envelope of this family gives a relatively tight lower bound in terms of the number of users, spreading gain and the noise distribution. The derivation methods for the noiseless and the noisy channels are different but when the noise variance goes to zero, the noisy channel bound approaches the noiseless case. The behavior of the lower bound shows that for small noise power, the number of users can be much more than the spreading gain without any significant loss of information (overloaded CDMA). A conjectured upper bound is also derived under the usual assumption that the users send out equally likely binary bits in the presence of additive noise with an arbitrary distribution. As the noise level increases, and/or, the ratio of the number of users and the spreading gain increases, the conjectured upper bound approaches the lower bound. We have also derived asymptotic limits of our bounds that can be compared to a formula that Tanaka obtained using techniques from statistical physics; his bound is close to that of our conjectured upper bound for large scale systems.Comment: to be published in IEEE Transactions on Information Theor

    Point vortices on the sphere: a case with opposite vorticities

    Full text link
    We study systems formed of 2N point vortices on a sphere with N vortices of strength +1 and N vortices of strength -1. In this case, the Hamiltonian is conserved by the symmetry which exchanges the positive vortices with the negative vortices. We prove the existence of some fixed and relative equilibria, and then study their stability with the ``Energy Momentum Method''. Most of the results obtained are nonlinear stability results. To end, some bifurcations are described.Comment: 35 pages, 9 figure

    Excitable media in open and closed chaotic flows

    Get PDF
    We investigate the response of an excitable medium to a localized perturbation in the presence of a two-dimensional smooth chaotic flow. Two distinct types of flows are numerically considered: open and closed. For both of them three distinct regimes are found, depending on the relative strengths of the stirring and the rate of the excitable reaction. In order to clarify and understand the role of the many competing mechanisms present, simplified models of the process are introduced. They are one-dimensional baker-map models for the flow and a one-dimensional approximation for the transverse profile of the filaments.Comment: 14 pages, 16 figure

    Measuring Topological Chaos

    Full text link
    The orbits of fluid particles in two dimensions effectively act as topological obstacles to material lines. A spacetime plot of the orbits of such particles can be regarded as a braid whose properties reflect the underlying dynamics. For a chaotic flow, the braid generated by the motion of three or more fluid particles is computed. A ``braiding exponent'' is then defined to characterize the complexity of the braid. This exponent is proportional to the usual Lyapunov exponent of the flow, associated with separation of nearby trajectories. Measuring chaos in this manner has several advantages, especially from the experimental viewpoint, since neither nearby trajectories nor derivatives of the velocity field are needed.Comment: 4 pages, 6 figures. RevTeX 4 with PSFrag macro

    Offsprings of a point vortex

    Full text link
    The distribution engendered by successive splitting of one point vortex are considered. The process of splitting a vortex in three using a reverse three-point vortex collapse course is analysed in great details and shown to be dissipative. A simple process of successive splitting is then defined and the resulting vorticity distribution and vortex populations are analysed

    Enhanced tracer transport by the spiral defect chaos state of a convecting fluid

    Get PDF
    To understand how spatiotemporal chaos may modify material transport, we use direct numerical simulations of the three-dimensional Boussinesq equations and of an advection-diffusion equation to study the transport of a passive tracer by the spiral defect chaos state of a convecting fluid. The simulations show that the transport is diffusive and is enhanced by the spatiotemporal chaos. The enhancement in tracer diffusivity follows two regimes. For large Peclet numbers (that is, small molecular diffusivities of the tracer), we find that the enhancement is proportional to the Peclet number. For small Peclet numbers, the enhancement is proportional to the square root of the Peclet number. We explain the presence of these two regimes in terms of how the local transport depends on the local wave numbers of the convection rolls. For large Peclet numbers, we further find that defects cause the tracer diffusivity to be enhanced locally in the direction orthogonal to the local wave vector but suppressed in the direction of the local wave vector.Comment: 11 pages, 12 figure
    corecore