227 research outputs found
Recent progress on the calculation of three-loop heavy flavor Wilson coefficients in deep-inelastic scattering
We report on our latest results in the calculation of the three-loop heavy
flavor contributions to the Wilson coefficients in deep-inelastic scattering in
the asymptotic region . We discuss the different methods used to
compute the required operator matrix elements and the corresponding Feynman
integrals. These methods very recently allowed us to obtain a series of new
operator matrix elements and Wilson coefficients like the flavor non-singlet
and pure singlet Wilson coefficients.Comment: 11 pages Latex, 2 Figures, Proc. of Loops and Legs in Quantum Field
Theory, April 2014, Weimar, German
New Results on Massive 3-Loop Wilson Coefficients in Deep-Inelastic Scattering
We present recent results on newly calculated 2- and 3-loop contributions to
the heavy quark parts of the structure functions in deep-inelastic scattering
due to charm and bottom.Comment: Contribution to the Proc. of Loops and Legs 2016, PoS, in prin
3-loop heavy flavor Wilson coefficients in deep-inelastic scattering
We present our most recent results on the calculation of the heavy flavor
contributions to deep-inelastic scattering at 3-loop order in the large
limit, where the heavy flavor Wilson coefficients are known to factorize into
light flavor Wilson coefficients and massive operator matrix elements. We
describe the different techniques employed for the calculation and show the
results in the case of the heavy flavor non-singlet and pure singlet
contributions to the structure function .Comment: 4 pages Latex, 2 style files, 4 Figures, Contribution to the
Proceedings of QCD '14, Montpellier, Jult 201
3-Loop Corrections to the Heavy Flavor Wilson Coefficients in Deep-Inelastic Scattering
A survey is given on the status of 3-loop heavy flavor corrections to
deep-inelastic structure functions at large enough virtualities .Comment: 13 pages Latex, 8 Figures, Contribution to the Proceedings of EPS
2015 Wie
Emission lines of Fe XI in the 257--407 A wavelength region observed in solar spectra from EIS/Hinode and SERTS
Theoretical emission-line ratios involving Fe XI transitions in the 257-407 A
wavelength range are derived using fully relativistic calculations of radiative
rates and electron impact excitation cross sections. These are subsequently
compared with both long wavelength channel Extreme-Ultraviolet Imaging
Spectrometer (EIS) spectra from the Hinode satellite (covering 245-291 A), and
first-order observations (235-449 A) obtained by the Solar Extreme-ultraviolet
Research Telescope and Spectrograph (SERTS). The 266.39, 266.60 and 276.36 A
lines of Fe XI are detected in two EIS spectra, confirming earlier
identifications of these features, and 276.36 A is found to provide an electron
density diagnostic when ratioed against the 257.55 A transition. Agreement
between theory and observation is found to be generally good for the SERTS data
sets, with discrepancies normally being due to known line blends, while the
257.55 A feature is detected for the first time in SERTS spectra. The most
useful Fe XI electron density diagnostic is found to be the 308.54/352.67
intensity ratio, which varies by a factor of 8.4 between N_e = 10^8 and 10^11
cm^-3, while showing little temperature sensitivity. However, the 349.04/352.67
ratio potentially provides a superior diagnostic, as it involves lines which
are closer in wavelength, and varies by a factor of 14.7 between N_e = 10^8 and
10^11 cm^-3. Unfortunately, the 349.04 A line is relatively weak, and also
blended with the second-order Fe X 174.52 A feature, unless the first-order
instrument response is enhanced.Comment: 9 pages, 5 figures, 13 tables; MNRAS in pres
Bottom quark mass effects in associated WH production with the H →b b decay through NNLO QCD
We present a computation of next-to-next-to-leading-order (NNLO) QCD corrections to the production of a Higgs boson in association with a W boson at the LHC followed by the decay of the Higgs boson to a bb pair. At variance with previous NNLO QCD studies of the same process, we treat b quarks as massive. An important advantage of working with massive b quarks is that it makes the use of flavor jet algorithms unnecessary and allows us to employ conventional jet algorithms to define b jets. We compare NNLO QCD descriptions of the associated WH(bb) production with massive and massless b quarks and also contrast them with the results provided by parton showers. We find O(5%) differences in fiducial cross sections computed with massless and massive b quarks. We also observe that much larger differences between massless and massive results, as well as between fixed-order and parton-shower results, can arise in selected kinematic distributions
A Cellular Potts Model simulating cell migration on and in matrix environments
Cell migration on and through extracellular matrix plays a critical role in a wide variety of physiological and pathological phenomena, and in scaffold-based tissue engineering. Migration is regulated by a number of extracellular matrix- or cell-derived biophysical parameters, such as matrix fiber orientation, gap size, and elasticity, or cell deformation, proteolysis, and adhesion. We here present an extended Cellular Potts Model (CPM) able to qualitatively and quantitatively describe cell migratory phenotype on both two-dimensional substrates and within three-dimensional environments, in a close comparison with experimental evidence. As distinct features of our approach, the cells are represented by compartmentalized discrete objects, differentiated in the nucleus and in the cytosolic region, while the extracellular matrix is composed of a fibrous mesh and of a homogeneous fluid. Our model provides a strong correlation of the directionality of migration with the topological ECM distribution and, further, a biphasic dependence of migration on the matrix density, and in part adhesion, in both two-dimensional and three-dimensional settings. Moreover, we demonstrate that the directional component of cell movement is strongly correlated with the topological distribution of the ECM fibrous network. In the three-dimensional networks, we also investigate the effects of the matrix mechanical microstructure, observing that, at a given distribution of fibers, cell motility has a subtle bimodal relation with the elasticity of the scaffold. Finally, cell locomotion requires deformation of the cell's nucleus and/or cell-derived proteolysis of steric fibrillar obstacles within rather rigid matrices characterized by small pores, not, however, for sufficiently large pores. In conclusion, we here propose a mathematical modeling approach that serves to characterize cell migration as a biological phenomen in health, disease and tissue engineering applications. The research that led to the present paper was partially supported by a grant of the group GNFM of INdA
Mitochondrial reactive oxygen species mediate cardiac structural, functional, and mitochondrial consequences of diet-induced metabolic heart disease
Mitochondrial reactive oxygen species (ROS) are associated with metabolic heart disease (MHD). However, the mechanism by which ROS cause MHD is unknown. We tested the hypothesis that mitochondrial ROS are a key mediator of MHD.Mice fed a high-fat high-sucrose (HFHS) diet develop MHD with cardiac diastolic and mitochondrial dysfunction that is associated with oxidative posttranslational modifications of cardiac mitochondrial proteins. Transgenic mice that express catalase in mitochondria and wild-type mice were fed an HFHS or control diet for 4 months. Cardiac mitochondria from HFHS-fed wild-type mice had a 3-fold greater rate of H2O2 production (P=0.001 versus control diet fed), a 30% decrease in complex II substrate-driven oxygen consumption (P=0.006), 21% to 23% decreases in complex I and II substrate-driven ATP synthesis (P=0.01), and a 62% decrease in complex II activity (P=0.002). In transgenic mice that express catalase in mitochondria, all HFHS diet-induced mitochondrial abnormalities were ameliorated, as were left ventricular hypertrophy and diastolic dysfunction. In HFHS-fed wild-type mice complex II substrate-driven ATP synthesis and activity were restored ex vivo by dithiothreitol (5 mmol/L), suggesting a role for reversible cysteine oxidative posttranslational modifications. In vitro site-directed mutation of complex II subunit B Cys100 or Cys103 to redox-insensitive serines prevented complex II dysfunction induced by ROS or high glucose/high palmitate in the medium.Mitochondrial ROS are pathogenic in MHD and contribute to mitochondrial dysfunction, at least in part, by causing oxidative posttranslational modifications of complex I and II proteins including reversible oxidative posttranslational modifications of complex II subunit B Cys100 and Cys103.Aaron L. Sverdlov, Aly Elezaby, Fuzhong Qin, Jessica B. Behring, Ivan Luptak, Timothy D. Calamaras, Deborah A. Siwik, Edward J. Miller, Marc Liesa, Orian S. Shirihai, David R. Pimentel, Richard A. Cohen, Markus M. Bachschmid, Wilson S. Colucc
- …
