4,299 research outputs found
A geometric setting for systems of ordinary differential equations
To a system of second order ordinary differential equations (SODE) one can
assign a canonical nonlinear connection that describes the geometry of the
system. In this work we develop a geometric setting that allows us to assign a
canonical nonlinear connection also to a system of higher order ordinary
differential equations (HODE). For this nonlinear connection we develop its
geometry, and explicitly compute all curvature components of the corresponding
Jacobi endomorphism. Using these curvature components we derive a Jacobi
equation that describes the behavior of nearby geodesics to a HODE. We motivate
the applicability of this nonlinear connection using examples from the
equivalence problem, the inverse problem of the calculus of variations, and
biharmonicity. For example, using components of the Jacobi endomorphism we
express two Wuenschmann-type invariants that appear in the study of scalar
third or fourth order ordinary differential equations
Supersymmetric Canonical Commutation Relations
We present unitarily represented supersymmetric canonical commutation
relations which are subsequently used to canonically quantize massive and
massless chiral,antichiral and vector fields. The massless fields, especially
the vector one, show new facets which do not appear in the non superymmetric
case. Our tool is the supersymmetric positivity induced by the Hilbert-Krein
structure of the superspace.Comment: 14 page
Supersymmetric Distributions, Hilbert Spaces of Supersymmetric Functions and Quantum Fields
The recently investigated Hilbert-Krein and other positivity structures of
the superspace are considered in the framework of superdistributions. These
tools are applied to problems raised by the rigorous supersymmetric quantum
field theory.Comment: 24 page
Van der Waerden calculus with commuting spinor variables and the Hilbert-Krein structure of the superspace
Working with anticommuting Weyl(or Mayorana) spinors in the framework of the
van der Waerden calculus is standard in supersymmetry. The natural frame for
rigorous supersymmetric quantum field theory makes use of operator-valued
superdistributions defined on supersymmetric test functions. In turn this makes
necessary a van der Waerden calculus in which the Grassmann variables
anticommute but the fermionic components are commutative instead of being
anticommutative. We work out such a calculus in view of applications to the
rigorous conceptual problems of the N=1 supersymmetric quantum field theory.Comment: 14 page
Sonographic Wrist Measurements and Detection of Anatomical Features in Carpal Tunnel Syndrome
INTRODUCTION: This study compares anatomical findings at wrist level in patients with known carpal tunnel syndrome (CTS) and controls by ultrasonography (US).
MATERIAL AND METHODS: Wrist-US investigations of 28 consecutive patients with 38 diagnosed, idiopathic CTS were compared to 49 healthy volunteers without history of CTS. Internal wrists dimensions, the presence of flexor muscle bellies in the carpal tunnel, and cross-sectional area of the median nerve were analyzed. The findings were correlated to gender, age, and BMI.
RESULTS: US demonstrated a square internal carpal tunnel configuration in CTS patients compared to controls (P < 0.001). Patients with CTS showed a trend towards the presence of flexor muscles bellies in the carpal tunnel (odds ratio 1.77, 95% CI 0.337-8.33). CTS was present in women with higher BMI (P = 0.015).
CONCLUSION: US allowed detection of specific anatomical features at wrist level in CTS patients. This observation may enable--following confirmation in larger prospective studies--risk evaluation for CTS development
Mining the ESO WFI and INT WFC archives for known Near Earth Asteroids. Mega-Precovery software
The ESO/MPG WFI and the INT WFC wide field archives comprising 330,000 images
were mined to search for serendipitous encounters of known Near Earth Asteroids
(NEAs) and Potentially Hazardous Asteroids (PHAs). A total of 152 asteroids (44
PHAs and 108 other NEAs) were identified using the PRECOVERY software, their
astrometry being measured on 761 images and sent to the Minor Planet Centre.
Both recoveries and precoveries were reported, including prolonged orbital arcs
for 18 precovered objects and 10 recoveries. We analyze all new opposition data
by comparing the orbits fitted before and after including our contributions. We
conclude the paper presenting Mega-Precovery, a new online service focused on
data mining of many instrument archives simultaneously for one or a few given
asteroids. A total of 28 instrument archives have been made available for
mining using this tool, adding together about 2.5 million images forming the
Mega-Archive.Comment: Accepted for publication in Astronomische Nachrichten (Sep 2012
Causal construction of the massless vertex diagram
The massless one-loop vertex diagram is constructed by exploiting the causal
structure of the diagram in configuration space, which can be translated
directly into dispersive relations in momentum space.Comment: 14 pages, LATEX with style file, corresponds to published versio
The tax identity for Markov additive risk processes
Taxed risk processes, i.e. processes which change their drift when reaching new maxima, represent a certain type of generalizations of Lévy and of Markov additive processes (MAP), since the times at which their Markovian mechanism changes are allowed to depend on the current position. In this paper we study generalizations of the tax identity of Albrecher and Hipp (2007) from the classical risk model to more general risk processes driven by spectrally-negative MAPs. We use the Sparre Andersen risk processes with phase-type interarrivals to illustrate the ideas in their simplest form
Mechanism of DNA loading by the DNA repair helicase XPD
Funding: Welcome Trust Programme Grant [WT091825MA to M.F.W., J.H.N.]; Wellcome Trust [099149/Z/12/Z]; Royal Society Wolfson Merit Award (to M.F.W., J.H.N.). Funding for open access charge: Wellcome Trust [WT091825MA].The xeroderma pigmentosum group D (XPD) helicase is a component of the transcription factor IIH complex in eukaryotes and plays an essential role in DNA repair in the nucleotide excision repair pathway. XPD is a 5′ to 3′ helicase with an essential iron–sulfur cluster. Structural and biochemical studies of the monomeric archaeal XPD homologues have aided a mechanistic understanding of this important class of helicase, but several important questions remain open. In particular, the mechanism for DNA loading, which is assumed to require large protein conformational change, is not fully understood. Here, DNA binding by the archaeal XPD helicase from Thermoplasma acidophilum has been investigated using a combination of crystallography, cross-linking, modified substrates and biochemical assays. The data are consistent with an initial tight binding of ssDNA to helicase domain 2, followed by transient opening of the interface between the Arch and 4FeS domains, allowing access to a second binding site on helicase domain 1 that directs DNA through the pore. A crystal structure of XPD from Sulfolobus acidocaldiarius that lacks helicase domain 2 has an otherwise unperturbed structure, emphasizing the stability of the interface between the Arch and 4FeS domains in XPD.Publisher PDFPeer reviewe
- …
