18 research outputs found
Effect of the application of an electric field on the performance of a two-phase loop device: Preliminary results
In the last decade, the continuous development of electronics has pointed out the need for a change in mind with regard to thermal management. In the present scenario, Pulsating Heat Pipes (PHPs) are novel promising two-phase passive heat transport devices that seem to meet all present and future thermal requirements. Nevertheless, PHPs governing phenomena are quite unique and not completely understood. In particular, single closed loop PHPs manifest several drawbacks, mostly related to the reduction of device thermal performance and reliability, i.e. the occurrence of multiple operational quasi-steady states. The present research work proposes the application of an electric field as a technique to promote the circulation of the working fluid in a preferential direction and stabilize the device operation. The tested single closed loop PHP is made of a copper tube with an inner tube diameter equal to 2.00 mm and filled with pure ethanol (60% filling ratio). The electric field is generated by a couple of wire-shaped electrodes powered with DC voltage up to 20 kV and laid parallel to the longitudinal axis of the glass tube constituting the adiabatic section. Although the electric field intensity in the working fluid region is weakened both by the polarization phenomenon of the working fluid and by the interposition of the glass tube, the experimental results highlight the influence of the electric field on the device thermal performance and encourage the continuation of the research in this direction
Post-traumatic hand rehabilitation using a powered metacarpal-phalangeal exoskeleton: a pilot study
Background: In the context of post-traumatic hand rehabilitation, stiffness of the hand joints limits the range of motion (ROM), grip strength, and the possibility of performing simple grasps. Robotic rehabilitation has been widely adopted for hand treatment with neurological patients, but its application in the orthopaedic scenario remains limited. In this paper, a pilot study targeting this population is presented, where the rehabilitation is performed using a powered finger exoskeleton, namely I-Phlex. The device aims to mobilize the metacarpal-phalangeal joint (MCP) in flexion-extension movements. The objective of the study was to verify the short-term efficacy, experience of use, and safety of I-Phlex in a clinical setting. As a secondary objective, the study verified the device's capability to measure clinically relevant variables. Methods: Six subjects with trauma-related illnesses of the right hand took part in the experiment. Passive and active range of motion (PROM and AROM) were recorded at the beginning and the end of the session by the therapist and by the exoskeleton. Experience of use was assessed through ad-hoc questionnaires and a numerical pain rate scale (NPRS). Safety was assessed by computing the number of adverse events during the operation. Results: Median increases in the PROM and AROM of 5.88% and 11.11% respectively were recorded among subjects. The questionnaires reported a median score of 93.83; IQR (85.01-100) and 80.00; IQR (79.79-93.75) respectively. No increase in the median NPRS was recorded among subjects between pre-and post-treatment. No major adverse event or injury to the patients was recorded. Only one malfunction was reported due to the brake of a transmission cable, but the patient reported no injury or discomfort. No statistical significance was observed between the ROM measurement recorded using the exoskeleton and the ones taken by the therapist using the goniometer. Conclusions: The device and related rehabilitation exercises can be successfully used in the clinical rehabilitation of the MCP joint. The device measurements are in line with the goniometer assessment from the therapist. Future studies will aim to reinforce the results obtained, introducing a control group to conclude on the specific contribution of the technology compared to conventional therapy. Trial registration: Hand Motor Rehabilitation Using a Wearable Robotic Device (WRL HX MCP), Clinicaltrials.gov ID NCT05155670, Registration date 13 December 2021, URL https://clinicaltrials.gov/ct2/show/NCT05155670
Thermal Response of a Pulsating Heat Pipe on Board the Rexus 18 Sounding Rocket: PHOS Experiment Chronicles
Pulsating Heat pipe only for Space (PHOS): Results of the REXUS 18 sounding rocket campaign
Two Closed Loop Pulsating Heat Pipes (CLPHPs) are tested on board REXUS 18 sounding rocket in order to obtain data over a relatively long microgravity period (approximately 90 s). The CLPHPs are partially filled with FC-72 and have, respectively, an inner tube diameter larger (3 mm) and slightly smaller (1.6 mm) than the critical diameter evaluated in static Earth gravity conditions. On ground, the small diameter CLPHP effectively works as a Pulsating Heat Pipe (PHP): the characteristic slug and plug flow pattern forms inside the tube and the heat exchange is triggered by thermally driven self-sustained oscillations of the working fluid. On the other hand, the large diameter CLPHP works as a two- phase thermosyphon in vertical position and doesn't work in horizontal position: in this particular condition, the working fluid stratifies within the device as the surface tension force is no longer able to balance buoyancy. Then, the idea to test the CLPHPs in reduced gravity conditions: as the gravity reduces the buoyancy forces becomes less intense and it is possible to recreate the typical PHP flow pattern also for larger inner tube diameters. This allows to increase the heat transfer rate and, consequently, to decrease the overall thermal resistance. Even though it was not possible to experience low gravity conditions due to a failure in the yoyo de-spin system, the thermal response to the peculiar acceleration field (hyper-gravity) experienced on board are thoroughly described
LONG TERM EXPERIMENTS ON A SINGLE CLOSED LOOP PULSATING HEAT PIPE WITH AND WITHOUT DEAD VOLUMES
Water sorption by anhydrous ionic liquids
The kinetics of water vapour sorption by several anhydrous hydrophobic and hydrophilic ionic liquids (ILs) were gravimetrically determined at 25 degrees C and two levels of humidity, namely 43 and 81%. A simple equation was used to fit the data. The kinetic parameters obtained from the different ILs were compared and the differences were related to the IL structures. Results showed that even hydrophobic ILs absorb water at an unexpected speed
Effect of the application of an electric field on the performance of a two-phase loop device: preliminary results
Identification of movement phenotypes from occupational gesture kinematics: Advancing individual ergonomic exposure classification and personalized training
The identification of personalized preventive strategies plays a major role in contrasting the occurrence of work-related musculoskeletal disorders. This requires the identification of distinct movement patterns within large samples and the attribution of a proper risk level to each identified movement phenotype. We assessed the feasibility of this approach by exploiting wearable inertial measurement units to estimate the whole-body kinematics of 43 healthy participants performing 18 reach-to-manipulate movements, which differed based on the object's position in the space and the type of manipulation required. Through unsupervised clustering, we identified multiple movement phenotypes graded by ergonomic performance. Furthermore, we determined which joints mostly contributed to instantiating the ergonomic differences across clusters, emphasizing the importance of monitoring this aspect during occupational gestures. Overall, our analysis suggests that movement phenotypes can be identified within occupational motor repertoires. Assigning individual performance to specific phenotypes has the potential to inform the development of more effective and tailored interventions
