2,243 research outputs found
Organic Electrochemical Transistor Incorporating an Ionogel as Solid State electrolyte for Lactate Sensing
Strong antenna-enhanced fluorescence of a single light-harvesting complex shows photon antibunching
The nature of the highly efficient energy transfer in photosynthetic light-harvesting complexes is a subject of intense research. Unfortunately, the low fluorescence efficiency and limited photostability hampers the study of individual light-harvesting complexes at ambient conditions. Here we demonstrate an over 500-fold fluorescence enhancement of light-harvesting complex 2 (LH2) at the single-molecule level by coupling to a gold nanoantenna. The resonant antenna produces an excitation enhancement of circa 100 times and a fluorescence lifetime shortening to ~\n20 ps. The radiative rate enhancement results in a 5.5-fold-improved fluorescence quantum efficiency. Exploiting the unique brightness, we have recorded the first photon antibunching of a single light-harvesting complex under ambient conditions, showing that the 27 bacteriochlorophylls coordinated by LH2 act as a non-classical single-photon emitter. The presented bright antenna-enhanced LH2 emission is a highly promising system to study energy transfer and the role of quantum coherence at the level of single complexes
Phosphonium dicyanamide ionogel incorporating bromophenol blue dye as a versatile platform for monitoring pH in solution
Online monitoring of pH levels in different environments such as bio-engineering and chemistry is vital for effective control of many critical industrial processes. The most common chemical parameter monitored is pH, and there is an increasing interest in the fabrication of robust, cheap and versatile pH sensing materials
that can be easily integrated within existing industrial technologies. Ideally these materials present low fouling and do not require calibration, thus minimising manual attention over long operational intervals. In this work we present an innovative material (ionogel) that integrates pH-sensing capabilities for continuously measuring pH during chemical or biological processes. The ionogel is a solid, flexible and easily to pattern material generated using tetrabutylphosponium dicyanamide ionic liquid, hydrogel polymer (N-isopropylacrylamide and N,N-methylene-bis(acrylamide)) and a pH sensitive dye (Bromophenol Blue). Figure 1 shows the UV spectra of the ionogel-dye in an acidic and a basic pH environment as well as the pictures of the ionogels.
A substantial colour variation is observed as the pH changes that can be monitored visually or optically. We incorporated the photoresponsive dye during photo-polymerisation of the monomer to improve stability, for example, by preventing leaching of the dye from the ionogel into the sample phase. This strategy was not found to inhibit the sensitivity of the optical response
Daily variability of Ceres' Albedo detected by means of radial velocities changes of the reflected sunlight
Bright features have been recently discovered by Dawn on Ceres, which extend
previous photometric and Space Telescope observations. These features should
produce distortions of the line profiles of the reflected solar spectrum and
therefore an apparent radial velocity variation modulated by the rotation of
the dwarf planet. Here we report on two sequences of observations of Ceres
performed in the nights of 31 July, 26-27 August 2015 by means of the
high-precision HARPS spectrograph at the 3.6-m La Silla ESO telescope. The
observations revealed a quite complex behaviour which likely combines a radial
velocity modulation due to the rotation with an amplitude of approx +/- 6 m/s
and an unexpected diurnal effect. The latter changes imply changes in the
albedo of Occator's bright features due to the blaze produced by the exposure
to solar radiation. The short-term variability of Ceres' albedo is on
timescales ranging from hours to months and can both be confirmed and followed
by means of dedicated radial velocity observations.Comment: 5 pag, 1fig, two tables, MNRAS Letters 201
The HARPS search for southern extrasolar planets: XXXIII. New multi-planet systems in the HARPS volume limited sample: a super-Earth and a Neptune in the habitable zone
The vast diversity of planetary systems detected to date is defying our
capability of understanding their formation and evolution. Well-defined
volume-limited surveys are the best tool at our disposal to tackle the problem,
via the acquisition of robust statistics of the orbital elements. We are using
the HARPS spectrograph to conduct our survey of ~850 nearby solar-type stars,
and in the course of the past nine years we have monitored the radial velocity
of HD103774, HD109271, and BD-061339. In this work we present the detection of
five planets orbiting these stars, with m*sin(i) between 0.6 and 7 Neptune
masses, four of which are in two multiple systems, comprising one super-Earth
and one planet within the habitable zone of a late-type dwarf. Although for
strategic reasons we chose efficiency over precision in this survey, we have
the capability to detect planets down to the Neptune and super-Earth mass
range, as well as multiple systems, provided that enough data points are made
available.Comment: 7 pages, 14 figures, accepted for publication by A&A, 04-01-201
The HARPS search for southern extrasolar planets. XXIII. 8 planetary companions to low-activity solar-type stars
In this paper, we present our HARPS radial-velocity data for eight
low-activity solar-type stars belonging to the HARPS volume-limited sample:
HD6718, HD8535, HD28254, HD290327, HD43197, HD44219, HD148156, and HD156411.
Keplerian fits to these data reveal the presence of low-mass companions around
these targets. With minimum masses ranging from 0.58 to 2.54 MJup, these
companions are in the planetary mass domain. The orbital periods of these
planets range from slightly less than one to almost seven years. The eight
orbits presented in this paper exhibit a wide variety of eccentricities: from
0.08 to above 0.8.Comment: 8 pages, 2 figures, accepted for publication in A&
Utilizzo di nitrati come inibitori di corrosione per le armature nel calcestruzzo
Corrosion inhibitors have been long considered as an effective preventative technique to slow down the onset
and/or propagation of corrosion phenomena in reinforced concrete. Several substances have been evaluated
as possible candidates, and great interest has been dedicated to nitrite ion. When investigating how these
substances slow down corrosion related processes – chlorides diffusion, critical chloride threshold, CO2
penetration and corrosion propagation –interactions between inhibitor and concrete are also vital.
Recently, nitrate based compounds have been proposed as corrosion inhibitors, as they present lower cost
than nitrites and are already used in concrete as set accelerators. Some studies have shown that nitrates
inhibiting mechanism is similar to that of nitrites. This work proposes the evaluation of a nitrate based
substance as possible corrosion inhibitor in concrete, and compares its performance with a nitrite based
inhibitor
- …
