2,206 research outputs found

    THE INVESTMENT POTENTIAL OF WARM-SEASON GRASSES FOR HILL-LAND BEEF PRODUCERS

    Get PDF
    The investment potential of warm-season grasses is compared with that of cool-season grasses, with special emphasis on hill-land beef production. In addition to evaluating relative costs and returns for various grazing systems, a sensitivity analysis is conducted. The results are then illustrated for a representative hill-land farm in West Virginia, and both an optimal and a set of quasi-optimal solutions are generated within the linear programming framework. In general, warm-season grasses are found to be a superior investment alternative for hill-land beef producers.Livestock Production/Industries,

    Examining hope as a transdiagnostic mechanism of change across anxiety disorders and CBT treatment protocols.

    Full text link
    Hope is a trait that represents the capacity to identify strategies or pathways to achieve goals and the motivation or agency to effectively pursue those pathways. Hope has been demonstrated to be a robust source of resilience to anxiety and stress and there is limited evidence that, as has been suggested for decades, hope may function as a core process or transdiagnostic mechanism of change in psychotherapy. The current study examined the role of hope in predicting recovery in a clinical trial in which 223 individuals with 1 of 4 anxiety disorders were randomized to transdiagnostic cognitive behavior therapy (CBT), disorder-specific CBT, or a waitlist controlled condition. Effect size results indicated moderate to large intraindividual increases in hope, that changes in hope were consistent across the five CBT treatment protocols, that changes in hope were significantly greater in CBT relative to waitlist, and that changes in hope began early in treatment. Results of growth curve analyses indicated that CBT was a robust predictor of trajectories of change in hope compared to waitlist, and that changes in hope predicted changes in both self-reported and clinician-rated anxiety. Finally, a statistically significant indirect effect was found indicating that the effects of treatment on changes in anxiety were mediated by treatment effects on hope. Together, these results suggest that hope may be a promising transdiagnostic mechanism of change that is relevant across anxiety disorders and treatment protocols.R01 MH090053 - NIMH NIH HHSAccepted manuscrip

    Testing equivalence of pure quantum states and graph states under SLOCC

    Full text link
    A set of necessary and sufficient conditions are derived for the equivalence of an arbitrary pure state and a graph state on n qubits under stochastic local operations and classical communication (SLOCC), using the stabilizer formalism. Because all stabilizer states are equivalent to a graph state by local unitary transformations, these conditions constitute a classical algorithm for the determination of SLOCC-equivalence of pure states and stabilizer states. This algorithm provides a distinct advantage over the direct solution of the SLOCC-equivalence condition for an unknown invertible local operator S, as it usually allows for easy detection of states that are not SLOCC-equivalent to graph states.Comment: 9 pages, to appear in International Journal of Quantum Information; Minor typos corrected, updated references

    Orion Rendezvous, Proximity Operations, and Docking Design and Analysis

    Get PDF
    The Orion vehicle will be required to perform rendezvous, proximity operations, and docking with the International Space Station (ISS) and the Earth Departure Stage (EDS)/Lunar Landing Vehicle (LLV) stack in Low Earth Orbit (LEO) as well as with the Lunar Landing Vehicle in Low Lunar Orbit (LLO). The RPOD system, which consists of sensors, actuators, and software is being designed to be flexible and robust enough to perform RPOD with different vehicles in different environments. This paper will describe the design and the analysis which has been performed to date to allow the vehicle to perform its mission. Since the RPOD design touches on many areas such as sensors selection and placement, trajectory design, navigation performance, and effector performance, it is inherently a systems design problem. This paper will address each of these issues in order to demonstrate how the Orion RPOD has been designed to accommodate and meet all the requirements levied on the system

    Double Exponential Instability of Triangular Arbitrage Systems

    Full text link
    If financial markets displayed the informational efficiency postulated in the efficient markets hypothesis (EMH), arbitrage operations would be self-extinguishing. The present paper considers arbitrage sequences in foreign exchange (FX) markets, in which trading platforms and information are fragmented. In Kozyakin et al. (2010) and Cross et al. (2012) it was shown that sequences of triangular arbitrage operations in FX markets containing 4 currencies and trader-arbitrageurs tend to display periodicity or grow exponentially rather than being self-extinguishing. This paper extends the analysis to 5 or higher-order currency worlds. The key findings are that in a 5-currency world arbitrage sequences may also follow an exponential law as well as display periodicity, but that in higher-order currency worlds a double exponential law may additionally apply. There is an "inheritance of instability" in the higher-order currency worlds. Profitable arbitrage operations are thus endemic rather that displaying the self-extinguishing properties implied by the EMH.Comment: 22 pages, 22 bibliography references, expanded Introduction and Conclusion, added bibliohraphy reference

    Popularity versus Similarity in Growing Networks

    Full text link
    Popularity is attractive -- this is the formula underlying preferential attachment, a popular explanation for the emergence of scaling in growing networks. If new connections are made preferentially to more popular nodes, then the resulting distribution of the number of connections that nodes have follows power laws observed in many real networks. Preferential attachment has been directly validated for some real networks, including the Internet. Preferential attachment can also be a consequence of different underlying processes based on node fitness, ranking, optimization, random walks, or duplication. Here we show that popularity is just one dimension of attractiveness. Another dimension is similarity. We develop a framework where new connections, instead of preferring popular nodes, optimize certain trade-offs between popularity and similarity. The framework admits a geometric interpretation, in which popularity preference emerges from local optimization. As opposed to preferential attachment, the optimization framework accurately describes large-scale evolution of technological (Internet), social (web of trust), and biological (E.coli metabolic) networks, predicting the probability of new links in them with a remarkable precision. The developed framework can thus be used for predicting new links in evolving networks, and provides a different perspective on preferential attachment as an emergent phenomenon

    Twin Binaries: Studies of Stability, Mass Transfer, and Coalescence

    Full text link
    Motivated by suggestions that binaries with almost equal-mass components ("twins") play an important role in the formation of double neutron stars and may be rather abundant among binaries, we study the stability of synchronized close and contact binaries with identical components in circular orbits. In particular, we investigate the dependency of the innermost stable circular orbit on the core mass, and we study the coalescence of the binary that occurs at smaller separations. For twin binaries composed of convective main-sequence stars, subgiants, or giants with low mass cores (M_c <~0.15M, where M is the mass of a component), a secular instability is reached during the contact phase, accompanied by a dynamical mass transfer instability at the same or at a slightly smaller orbital separation. Binaries that come inside this instability limit transfer mass gradually from one component to the other and then coalesce quickly as mass is lost through the outer Lagrangian points. For twin giant binaries with moderate to massive cores (M_c >~0.15M), we find that stable contact configurations exist at all separations down to the Roche limit, when mass shedding through the outer Lagrangian points triggers a coalescence of the envelopes and leaves the cores orbiting in a central tight binary. In addition to the formation of binary neutron stars, we also discuss the implications of our results for the production of planetary nebulae with double degenerate central binaries.Comment: 17 pages, accepted to ApJ, final version includes discussion of planetary nebulae with central binaries and a new figure about shock heating, visualizations at http://webpub.allegheny.edu/employee/j/jalombar/movies

    Stellar GADGET: A smooth particle hydrodynamics code for stellar astrophysics and its application to Type Ia supernovae from white dwarf mergers

    Full text link
    Mergers of two carbon-oxygen white dwarfs have long been suspected to be progenitors of Type Ia Supernovae. Here we present our modifications to the cosmological smoothed particle hydrodynamics code Gadget to apply it to stellar physics including but not limited to mergers of white dwarfs. We demonstrate a new method to map a one-dimensional profile of an object in hydrostatic equilibrium to a stable particle distribution. We use the code to study the effect of initial conditions and resolution on the properties of the merger of two white dwarfs. We compare mergers with approximate and exact binary initial conditions and find that exact binary initial conditions lead to a much more stable binary system but there is no difference in the properties of the actual merger. In contrast, we find that resolution is a critical issue for simulations of white dwarf mergers. Carbon burning hotspots which may lead to a detonation in the so-called violent merger scenario emerge only in simulations with sufficient resolution but independent of the type of binary initial conditions. We conclude that simulations of white dwarf mergers which attempt to investigate their potential for Type Ia supernovae should be carried out with at least 10^6 particles.Comment: 11 pages, 6 figures, accepted for publication in MNRA
    corecore