11,073 research outputs found
Hidden unity in the quantum description of matter
We introduce an algebraic framework for interacting quantum systems that
enables studying complex phenomena, characterized by the coexistence and
competition of various broken symmetry states of matter. The approach unveils
the hidden unity behind seemingly unrelated physical phenomena, thus
establishing exact connections between them. This leads to the fundamental
concept of {\it universality} of physical phenomena, a general concept not
restricted to the domain of critical behavior. Key to our framework is the
concept of {\it languages} and the construction of {\it dictionaries} relating
them.Comment: 10 pages 2 psfigures. Appeared in Recent Progress in Many-Body
Theorie
Recommended from our members
Potentialities of customer relationship management in the building of government reputation
Excitons in insulating cuprates
We study the electronic excitations near the charge-transfer gap in
insulating CuO planes, starting from a six-band model which includes and orbitals and Cu-O nearest-neighbor repulsion .
While the low lying electronic excitations in the doped system are well
described by a modified model, the excitonic states of the insulator
include hybrid states of symmetry. We also obtain
excitons of symmetries and , and eventually , which can
be explained within a one-band model. The results agree with observed optical
absorption and Raman excitations.Comment: 10 pages and 3 figures in postscript format, compressed with uufile
A Transferable H2O Interaction Potential Based on a Single Center Multipole Expansion: SCME
A transferable potential energy function for describing the interaction
between water molecules is presented. The electrostatic interaction is
described rigorously using a multipole expansion. Only one expansion center is
used per molecule to avoid the introduction of monopoles. This single center
approach turns out to converge and give close agreement with ab initio
calculations when carried out up to and including the hexadecapole. Both dipole
and quadrupole polarizability is included. All parameters in the electrostatic
interaction as well as the dispersion interaction are taken from ab initio
calculations or experimental measurements of a single water molecule. The
repulsive part of the interaction is parametrized to fit ab initio calculations
of small water clusters and experimental measurements of ice Ih. The
parametrized potential function was then used to simulate liquid water and the
results agree well with experiment, even better than simulations using some of
the point charge potentials fitted to liquid water. The evaluation of the new
interaction potential for condensed phases is fast because point charges are
not present and the interaction can, to a good approximation, be truncated at a
finite range.Comment: 30 pages, 15 figures, 11 table
Magnetoelectric effects in an organo-metallic quantum magnet
We observe a bilinear magnetic field-induced electric polarization of 50 in single crystals of NiCl-4SC(NH) (DTN). DTN forms a
tetragonal structure that breaks inversion symmetry, with the highly polar
thiourea molecules all tilted in the same direction along the c-axis.
Application of a magnetic field between 2 and 12 T induces canted
antiferromagnetism of the Ni spins and the resulting magnetization closely
tracks the electric polarization. We speculate that the Ni magnetic forces
acting on the soft organic lattice can create significant distortions and
modify the angles of the thiourea molecules, thereby creating a magnetoelectric
effect. This is an example of how magnetoelectric effects can be constructed in
organo-metallic single crystals by combining magnetic ions with electrically
polar organic elements.Comment: 3 pages, 3 figure
Electron Spin Resonance of defects in the Haldane System Y(2)BaNiO(5)
We calculate the electron paramagnetic resonance (EPR) spectra of the
antiferromagnetic spin-1 chain compound Y(2)BaNi(1-x)Mg(x)O(5) for different
values of x and temperature T much lower than the Haldane gap (~100K). The
low-energy spectrum of an anisotropic Heisenberg Hamiltonian, with all
parameters determined from experiment, has been solved using DMRG. The observed
EPR spectra are quantitatively reproduced by this model. The presence of
end-chain S=1/2 states is clearly observed as the main peak in the spectrum and
the remaining structure is completely understood.Comment: 5 pages, 4 figures include
Random interactions and spin-glass thermodynamic transition in the hole-doped Haldane system YCaBaNiO
Magnetization, DC and AC bulk susceptibility of the =1 Haldane chain
system doped with electronic holes, YCaBaNiO
(0x0.20), have been measured and analyzed. The most striking
results are (i) a sub-Curie power law behavior of the linear susceptibility,
, for temperature lower than the Haldane gap
of the undoped compound (x=0) (ii) the existence of a spin-glass thermodynamic
transition at = 2-3 K. These findings are consistent with (i) random
couplings within the chains between the spin degrees of freedom induced by hole
doping, (ii) the existence of ferromagnetic bonds that induce magnetic
frustration when interchain interactions come into play at low temperature.Comment: 4 pages, 4 figures, to appear in Phys. Rev.
Novel magnetic orderings in the kagome Kondo-lattice model
We consider the Kondo-lattice model on the kagome lattice and study its
weak-coupling instabilities at band filling fractions for which the Fermi
surface has singularities. These singularites include Dirac points, quadratic
Fermi points in contact with a flat band, and Van Hove saddle points. By
combining a controlled analytical approach with large-scale numerical
simulations, we demonstrate that the weak-coupling instabilities of the
Kondo-lattice model lead to exotic magnetic orderings. In particular, some of
these magnetic orderings produce a spontaneous quantum anomalous Hall state.Comment: 15 pages, 11 figure
- …
