7,288 research outputs found
Spinon-Holon binding in model
Using a phenomenological model, we discuss the consequences of spinon-holon
binding in the U(1) slave-boson approach to model. Within a small
( hole concentration) expansion, we show that spinon-holon binding produces
a pseudo-gap normal state with a segmented Fermi surface and the
superconducting state is formed by opening an "additional" d-wave gap on the
segmented Fermi surface. The d-wave gap merge with the pseudo-gap smoothly as
temperature . The quasi-particles in the superconducting state are
coupled to external electromagnetic field with a coupling constant of order
where , depending on the strength of the
effective spinon-holon binding potential.Comment: 9 pages, 3 figure
Phase transition in a spring-block model of surface fracture
A simple and robust spring-block model obeying threshold dynamics is
introduced to study surface fracture of an overlayer subject to stress induced
by adhesion to a substrate. We find a novel phase transition in the crack
morphology and fragment-size statistics when the strain and the substrate
coupling are varied. Across the transition, the cracks display in succession
short-range, power-law and long-range correlations. The study of stress release
prior to cracking yields useful information on the cracking process.Comment: RevTeX, 4 pages, 4 Postscript figures included using epsfi
High resolution 10 mu spectrometry at different planetary latitudes. A practical Hadamard transform spectrometer for astronomical application
Infrared observations at different latitudes were studied in order to obtain spectra in the 10 micrometers region to understand differences in chemical composition or physical structure of the optical features. In order to receive such spectra of a rotating planet, simultaneous observations at different latitudes were made. A Hadamard transform spectrometer with 15 entrance slits was used to obtain 15 simultaneous spectra, at a resolution of 0.01 micrometers. The spectral band covered contained 255 spectral elements
Dynamical coupled-channel model of kaon-hyperon interactions
The pi N --> KY and KY --> KY reactions are studied using a dynamical
coupled-channel model of meson-baryon interactions at energies where the baryon
resonances are strongly excited. The channels included are: pi N, K \Lambda,
and K\Sigma. The resonances considered are: N^* [S_{11}(1650), P_{11}(1710),
P_{13}(1720),D_{13}(1700)]; \Delta^* [S_{31}(1900), P_{31}(1910),
P_{33}(1920)]; \Lambda ^* [S_{01}(1670), P_{01}(1810)] \Sigma^* [P_{11}(1660),
D_{13}(1670)]; and K^*(892). The basic non-resonant \pi N --> KY and KY --> KY
transition potentials are derived from effective Lagrangians using a unitary
transformation method. The dynamical coupled-channel equations are simplified
by parametrizing the pi N -->pi N amplitudes in terms of empirical pi N
partial-wave amplitudes and a phenomenological off-shell function. Two models
have been constructed. Model A is built by fixing all coupling constants and
resonance parameters using SU(3) symmetry, the Particle Data Group values, and
results from a constituent quark model. Model B is obtained by allowing most of
the parameters to vary around the values of model A in fitting the data. Good
fits to the available data for pi^- p to K^0 \Lambda, K^0 \Sigma^0 have been
achieved. The investigated kinematics region in the center-of-mass frame goes
from threshold to 2.5 GeV. The constructed models can be imbedded into
associated dynamical coupled-channel studies of kaon photo- and
electro-production reactions.Comment: 35 pages, 11 Figure
Overview of Hard processes at RHIC: high-pt light hadron and charm production
An overview of the experimental results on high-pt light hadron production
and open charm production is presented. Data on particle production in
elementary collisions are compared to next-to-leading order perturbative QCD
calculations. Particle production in Au+Au collisions is then compared to this
baseline.Comment: 9 pages, 6 figures, Strange Quark Matter 200
Weak and Strong coupling regimes in plasmonic-QED
We present a quantum theory for the interaction of a two level emitter with
surface plasmon polaritons confined in single-mode waveguide resonators. Based
on the Green's function approach, we develop the conditions for the weak and
strong coupling regimes by taking into account the sources of dissipation and
decoherence: radiative and non-radiative decays, internal loss processes in the
emitter, as well as propagation and leakage losses of the plasmons in the
resonator. The theory is supported by numerical calculations for several
quantum emitters, GaAs and CdSe quantum dots and NV centers together with
different types of resonators constructed of hybrid, cylindrical or wedge
waveguides. We further study the role of temperature and resonator length.
Assuming realistic leakage rates, we find the existence of an optimal length at
which strong coupling is possible. Our calculations show that the strong
coupling regime in plasmonic resonators is accessible within current technology
when working at very low temperatures (<4K). In the weak coupling regime our
theory accounts for recent experimental results. By further optimization we
find highly enhanced spontaneous emission with Purcell factors over 1000 at
room temperature for NV-centers. We finally discuss more applications for
quantum nonlinear optics and plasmon-plasmon interactions.Comment: published as Phys. Rev. B 87, 115419 (2013
PT-Symmetric Quantum Theory Defined in a Krein Space
We provide a mathematical framework for PT-symmetric quantum theory, which is
applicable irrespective of whether a system is defined on R or a complex
contour, whether PT symmetry is unbroken, and so on. The linear space in which
PT-symmetric quantum theory is naturally defined is a Krein space constructed
by introducing an indefinite metric into a Hilbert space composed of square
integrable complex functions in a complex contour. We show that in this Krein
space every PT-symmetric operator is P-Hermitian if and only if it has
transposition symmetry as well, from which the characteristic properties of the
PT-symmetric Hamiltonians found in the literature follow. Some possible ways to
construct physical theories are discussed within the restriction to the class
K(H).Comment: 8 pages, no figures; Refs. added, minor revisio
A liquid Xenon Positron Emission Tomograph for small animal imaging : first experimental results of a prototype cell
A detector using liquid Xenon (LXe) in the scintillation mode is studied for
Positron Emission Tomography (PET) of small animals. Its specific design aims
at taking full advantage of the Liquid Xenon scintillation properties. This
paper reports on energy, time and spatial resolution capabilities of the first
LXe prototype module equipped with a Position Sensitive Photo- Multiplier tube
(PSPMT) operating in the VUV range (178 nm) and at 165 K. The experimental
results show that such a LXe PET configuration might be a promising solution
insensitive to any parallax effect.Comment: 34 pages, 18 pages, to appear in NIM
Dynamics of fermions coupling to a U(1) gauge field in the limit
We study in this paper the properties of a gas of fermions coupling to a U(1)
gauge field at wavevectors at dimensions larger than one,
where is a high momentum cutoff and is the fermi wave
vector. In particular, we shall consider the limit where charge
and current fluctuations at wave vectors are forbidden. Within a
bosonization approximation, effective actions describing the low energy physics
of the system are constructed, where we show that the system can be described
as a fermion liquid formed by chargeless quasi-particles which has vanishing
wavefunction overlap with the bare fermions in the system.Comment: 25 page
- …
