235 research outputs found
Habitat fragmentation and anthropogenic factors affect wildcat Felis silvestris silvestris occupancy and detectability on Mt Etna
Knowledge of patterns of occupancy is crucial for planning sound biological management and for identifying areas which require paramount conservation attention. The European wildcat Felis silvestris is an elusive carnivore and is classified as ‘least concern’ on the IUCN red list, but with a decreasing population trend in some areas. Sicily hosts a peculiar wildcat population, which deserves conservation and management actions, due to its isolation from the mainland. Patterns of occupancy for wildcats are unknown in Italy, and especially in Sicily. We aimed to identify which ecological drivers determined wildcat occurrence on Mt Etna and to provide conservation actions to promote the wildcats’ long-term survival in this peculiar environment. The genetic identity of the wildcat population was confirmed through a scat-collection which detected 22 different wildcat individuals. We analysed wildcat detections collected by 91 cameras using an occupancy frame work to assess which covariates influenced the detection (p) and the occupancy (ψ) estimates. We recorded 70 detections of the target species from 38 cameras within 3377 trap-days. Wildcat detection was positively influenced by the distance to the major paved roads and negatively affected by the presence of humans. Wildcat occupancy was positively associated with mixed forest and negatively influenced by pine forest, fragmentation of mixed forest and altitude. A spatially explicit predicted occupancy map, validated using an independent dataset of wildcat presence records, showed that higher occupancy estimates were scattered, mainly located on the north face and at lower altitude. Habitat fragmentation has been claimed as a significant threat for the wildcat and this is the first study that has ascertained this as a limiting factor for wildcat occurrence. Conservation actions should promote interconnectivity between areas with high predicted wildcat occupancy while minimising the loss of habitat
A New Approach to the Study of Stellar Populations in Early-Type Galaxies: K-band Spectral Indices and an Application to the Fornax Cluster
New measurements of K-band spectral features are presented for eleven
early-type galaxies in the nearby Fornax galaxy cluster. Based on these
measurements, the following conclusions have been reached: (1) in galaxies with
no signatures of a young stellar component, the K-band Na I index is highly
correlated with both the optical metallicity indicator [MgFe]' and central
velocity dispersion; (2) in the same galaxies, the K-band Fe features saturate
in galaxies with sigma > 150 km/s while Na I (and [MgFe]') continues to
increase; (3) [Si/Fe] (and possibly [Na/Fe]) is larger in all observed Fornax
galaxies than in Galactic open clusters with near-solar metallicity; (4) in
various near-IR diagnostic diagrams, galaxies with signatures of a young
stellar component (strong Hbeta, weak [MgFe]') are clearly separated from
galaxies with purely old stellar populations; furthermore, this separation is
consistent with the presence of an increased number of M-giant stars (most
likely to be thermally pulsating AGB stars); (5) the near-IR diagrams discussed
here seem as efficient for detecting putatively young stellar components in
early-type galaxies as the more commonly used age/metallicity diagnostic plots
using optical indices (e.g Hbeta vs. [MgFe]').Comment: 47 pages, 16 figures, ApJ accepte
Numerical study of a non-equilibrium interface model
We have carried out extensive computer simulations of one-dimensional models
related to the low noise (solid-on-solid) non-equilibrium interface of a two
dimensional anchored Toom model with unbiased and biased noise. For the
unbiased case the computed fluctuations of the interface in this limit provide
new numerical evidence for the logarithmic correction to the subnormal L^(1/2)
variance which was predicted by the dynamic renormalization group calculations
on the modified Edwards-Wilkinson equation. In the biased case the simulations
are in close quantitative agreement with the predictions of the Collective
Variable Approximation (CVA), which gives the same L^(2/3) behavior of the
variance as the KPZ equation.Comment: 15 pages revtex, 4 Postscript Figure
Properties of mm galaxies: Constraints from K-band blank fields
We have used the IRAM Plateau de Bure mm interferometer to locate with
subarcsecond accuracy the dust emission of three of the brightest 1.2mm sources
in the NTT Deep Field (NDF) selected from our 1.2mm MAMBO survey at the IRAM
30m telescope. We combine these results with deep B to K imaging and VLA
interferometry. Strikingly, none of the three accurately located mm galaxies
MMJ120546-0741.5, MMJ120539-0745.4, and MMJ120517-0743.1 has a K-band
counterpart down to the faint limit of K>21.9. This implies that these three
galaxies are either extremely obscured and/or are at very high redshifts
(z>~4). We combine our results with literature data for 11 more (sub)mm
galaxies that are identified with similar reliability. In terms of their K-band
properties, the sample divides into three roughly equal groups: (i) undetected
to K~22, (ii) detected in the near-infrared but not the optical and (iii)
detected in the optical with the possibility of optical follow-up spectroscopy.
We find a trend in this sample between near-infrared to submm and submm to
radio spectral indices, which in comparison to spectral energy distributions
(SEDs) of low redshift infrared luminous galaxies suggests that the most
plausible primary factor causing the extreme near-infrared faintness of our
objects is their high redshift. We show that the near-infrared to radio SEDs of
the sample are inconsistent with SEDs that resemble local far-infrared cool
galaxies with moderate luminosities, which were proposed in some models of the
submm sky. We briefly discuss the implications of the results for our
understanding of galaxy formation.Comment: aastex, 5 figures. Accepted by Ap
ESO Imaging Survey: infrared observations of CDF-S and HDF-S
This paper presents infrared data obtained from observations carried out at
the ESO 3.5m New Technology Telescope (NTT) of the Hubble Deep Field South
(HDF-S) and the Chandra Deep Field South (CDF-S). These data were taken as part
of the ESO Imaging Survey (EIS) program, a public survey conducted by ESO to
promote follow-up observations with the VLT. In the HDF-S field the infrared
observations cover an area of ~53 square arcmin, encompassing the HST WFPC2 and
STIS fields, in the JHKs passbands. The seeing measured in the final stacked
images ranges from 0.79" to 1.22" and the median limiting magnitudes (AB
system, 2" aperture, 5sigma detection limit) are J_AB~23.0, H_AB~22.8 and
K_AB~23.0 mag. Less complete data are also available in JKs for the adjacent
HST NICMOS field. For CDF-S, the infrared observations cover a total area of
\~100 square arcmin, reaching median limiting magnitudes (as defined above) of
J_AB~23.6 and K_AB~22.7 mag. For one CDF-S field H-band data are also
available. This paper describes the observations and presents the results of
new reductions carried out entirely through the un-supervised, high-throughput
EIS Data Reduction System and its associated EIS/MVM C++-based image processing
library developed, over the past 5 years, by the EIS project and now publicly
available. The paper also presents source catalogs extracted from the final
co-added images which are used to evaluate the scientific quality of the survey
products, and hence the performance of the software. This is done comparing the
results obtained in the present work with those obtained by other authors from
independent data and/or reductions carried out with different software packages
and techniques. The final science-grade catalogs and co-added images are
available at CDS.Comment: Accepted for publication in A&A, 13 pages, 12 figures; a full
resolution version of the paper is available from
http://www.astro.ku.dk/~lisbeth/eisdata/papers/4528.pdf ; related catalogs
and images are available through http://www.astro.ku.dk/~lisbeth/eisdata
Non-linear feedback effects in coupled Boson-Fermion systems
We address ourselves to a class of systems composed of two coupled subsystems
without any intra-subsystem interaction: itinerant Fermions and localized
Bosons on a lattice. Switching on an interaction between the two subsystems
leads to feedback effects which result in a rich dynamical structure in both of
them. Such feedback features are studied on the basis of the flow equation
technique - an infinite series of infinitesimal unitary transformations - which
leads to a gradual elimination of the inter-subsystem interaction. As a result
the two subsystems get decoupled but their renormalized kinetic energies become
mutually dependent on each other. Choosing for the inter - subsystem
interaction a charge exchange term (the Boson-Fermion model) the initially
localized Bosons acquire itinerancy through their dependence on the
renormalized Fermion dispersion. This latter evolves from a free particle
dispersion into one showing a pseudogap structure near the chemical potential.
Upon lowering the temperature both subsystems simultaneously enter a
macroscopic coherent quantum state. The Bosons become superfluid, exhibiting a
soundwave like dispersion while the Fermions develop a true gap in their
dispersion. The essential physical features described by this technique are
already contained in the renormalization of the kinetic terms in the respective
Hamiltonians of the two subsystems. The extra interaction terms resulting in
the process of iteration only strengthen this physics. We compare the results
with previous calculations based on selfconsistent perturbative approaches.Comment: 14 pages, 16 figures, accepted for publication in Phys. Rev.
Structural and compositional properties of brown dwarf disks: the case of 2MASS J04442713+2512164
In order to improve our understanding of substellar formation, we have
performed a compositional and structural study of a brown dwarf disk.
We present the result of photometric, spectroscopic and imaging observations
of 2MASS J04442713+2512164, a young brown dwarf (M7.25) member of the Taurus
association. Our dataset, combined with results from the literature, provides a
complete coverage of the spectral energy distribution from the optical to the
millimeter including the first photometric measurement of a brown dwarf disk at
3.7mm, and allows us to perform a detailed analysis of the disk properties.
The target was known to have a disk. High resolution optical spectroscopy
shows that it is intensely accreting, and powers a jet and an outflow. The disk
structure is similar to that observed for more massive TTauri stars. Spectral
decomposition models of Spitzer/IRS spectra suggest that the mid-infrared
emission from the optically thin disk layers is dominated by grains with
intermediate sizes (1.5micron). Crystalline silicates are significantly more
abondant in the outer part and/or deeper layers of the disk, implying very
efficient mixing and/or additional annealing processes. Sub-millimeter and
millimeter data indicate that most of the disk mass is in large grains (>1mm)Comment: 17 pages, 10 figures, 7 tables, accepted for A&
Physical and dynamical properties of the main belt triple asteroid (87) Sylvia
We present the analysis of high angular resolution observations of the triple
Asteroid (87) Sylvia collected with three 8-10 m class telescopes (Keck, VLT,
Gemini North) and the Hubble Space Telescope. The moons' mutual orbits were
derived individually using a purely Keplerian model. We computed the position
of Romulus, the outer moon of the system, at the epoch of a recent stellar
occultation which was successfully observed at less than 15 km from our
predicted position, within the uncertainty of our model. The occultation data
revealed that the Moon, with a surface-area equivalent diameter
Ds=23.10.7km, is strongly elongated (axes ratio of
2.70.32.70.3), significantly more than single asteroids of similar
size in the main-belt. We concluded that its shape is probably affected by the
tides from the primary. A new shape model of the primary was calculated
combining adaptive-optics observations with this occultation and 40 archived
light-curves recorded since 1978. The difference between the
J2=0.024-0.009+0.016 derived from the 3-D shape model assuming an homogeneous
distribution of mass for the volume equivalent diameter Dv=27310km primary
and the null J2 implied by the Keplerian orbits suggests a non-homogeneous mass
distribution in the asteroid's interior
Universality in two-dimensional Kardar-Parisi-Zhang growth
We analyze simulations results of a model proposed for etching of a
crystalline solid and results of other discrete models in the 2+1-dimensional
Kardar-Parisi-Zhang (KPZ) class. In the steady states, the moments W_n of
orders n=2,3,4 of the heights distribution are estimated. Results for the
etching model, the ballistic deposition (BD) model and the
temperature-dependent body-centered restricted solid-on-solid model (BCSOS)
suggest the universality of the absolute value of the skewness S = W_3 /
(W_2)^(3/2) and of the value of the kurtosis Q = W_4 / (W_2)^2 - 3. The sign of
the skewness is the same of the parameter \lambda of the KPZ equation which
represents the process in the continuum limit. The best numerical estimates,
obtained from the etching model, are |S| = 0.26 +- 0.01 and Q = 0.134 +- 0.015.
For this model, the roughness exponent \alpha = 0.383 +- 0.008 is obtained,
accounting for a constant correction term (intrinsic width) in the scaling of
the squared interface width. This value is slightly below previous estimates of
extensive simulations and rules out the proposal of the exact value \alpha=2/5.
The conclusion is supported by results for the ballistic deposition model.
Independent estimates of the dynamical exponent and of the growth exponent are
1.605 <= z <= 1.64 and \beta = 0.229 +- 0.005, respectively, which are
consistent with the relations \alpha + z = 2 and z = \alpha / \beta.Comment: 8 pages, 9 figures, to be published in Phys. Rev.
The Primordial Binary Population - I: A near-infrared adaptive optics search for close visual companions to A star members of Scorpius OB2
We present the results of a near-infrared adaptive optics survey with the aim
to detect close companions to Hipparcos members in the three subgroups of the
nearby OB association Sco OB2: Upper Scorpius (US), Upper Centaurus Lupus (UCL)
and Lower Centaurus Crux (LCC). We have targeted 199 A-type and late B-type
stars in the Ks band, and a subset also in the J and H band. We find 151
stellar components other than the target stars. A brightness criterion is used
to separate these components into 77 background stars and 74 candidate physical
companion stars. Out of these 74 candidate companions, 41 have not been
reported before (14 in US; 13 in UCL; 14 in LCC). Companion star masses range
from 0.1 to 3 Msun. The mass ratio distribution follows f(q) = q^-0.33, which
excludes random pairing. No close (rho < 3.75'') companion stars or background
stars are found in the magnitude range 12 < Ks < 14. The lack of stars with
these properties cannot be explained by low-number statistics, and may imply a
lower limit on the companion mass of ~ 0.1 Msun. Close stellar components with
Ks > 14 are observed. If these components are very low-mass companion stars, a
gap in the companion mass distribution might be present. The small number of
close low-mass companion stars could support the embryo-ejection formation
scenario for brown dwarfs. Our findings are compared with and complementary to
visual, spectroscopic, and astrometric data on binarity in Sco OB2. We find an
overall companion star fraction of 0.52 in this association. This paper is the
first step toward our goal to derive the primordial binary population in Sco
OB2.Comment: 27 pages, to accepted by A&
- …
