3,389 research outputs found
Apple dimple fruit viroid sequence variability and its specific detection by multiplex fluorescent RT-PCR in the presence of apple scar skin viroid.
Spectrally resolved observations of atmospheric emitted radiance in the H2O rotation band
This paper presents the project Earth Cooling by Water
Vapor Radiation, an observational programme, which aims at
developing a database of spectrally resolved far infrared
observations, in atmospheric dry conditions, in order to
validate radiative transfer models and test the quality of water
vapor continuum and line parameters. The project provides
the very first set of far-infrared spectral downwelling
radiance measurements, in dry atmospheric conditions,
which are complemented with Raman Lidar-derived
temperature and water vapor profiles
Search for spontaneous muon emission from lead nuclei
We describe a possible search for muonic radioactivity from lead nuclei using
the base elements ("bricks" composed by lead and nuclear emulsion sheets) of
the long-baseline OPERA neutrino experiment. We present the results of a Monte
Carlo simulation concerning the expected event topologies and estimates of the
background events. Using few bricks, we could reach a good sensitivity level.Comment: 12 pages, 4 figure
Electron/pion separation with an Emulsion Cloud Chamber by using a Neural Network
We have studied the performance of a new algorithm for electron/pion
separation in an Emulsion Cloud Chamber (ECC) made of lead and nuclear emulsion
films. The software for separation consists of two parts: a shower
reconstruction algorithm and a Neural Network that assigns to each
reconstructed shower the probability to be an electron or a pion. The
performance has been studied for the ECC of the OPERA experiment [1].
The separation algorithm has been optimized by using a detailed Monte
Carlo simulation of the ECC and tested on real data taken at CERN (pion beams)
and at DESY (electron beams). The algorithm allows to achieve a 90% electron
identification efficiency with a pion misidentification smaller than 1% for
energies higher than 2 GeV
Uncovering the signaling pathway behind extracellular guanine-induced activation of NO System: New perspectives in memory-related disorders
Mounting evidence suggests that the guanine-based purines stand out as key player in cell metabolism and in several models of neurodegenerative disorders, such as Parkinson's and Alzheimer's diseases. Guanosine (GUO) and guanine (GUA) are extracellular signaling molecules derived from the breakdown of the correspondent nucleotide, GTP, and their intracellular and extracellular levels are regulated by the fine-tuned activity of two major enzymes, purine nucleoside phosphorylase (PNP) and guanine deaminase (GDA). Noteworthy, GUO and GUA, seem to play opposite roles in the modulation of cognitive functions, such as learning and memory. Indeed GUO, despite exerting neuroprotective, anti-apoptotic and neurotrophic effects, causes a decay of cognitive activities, whereas GUA administration in rats results in working memory improvement (prevented by L-NAME pre-treatment). This study was designed to investigate, in a model of SH-SY5Y neuroblastoma cell line, the signal transduction pathway activated by extracellular GUA. Altogether, our results showed that: (i) in addition to an enhanced phosphorylation of ASK1, p38 and JNK, likely linked to a non-massive and transient ROS production, the PKB/NO/sGC/cGMP/PKG/ERK cascade seems to be the main signaling pathway elicited by extracellular GUA; (ii) the activation of this pathway occurs in a pertussis-toxin sensitive manner, thus suggesting the involvement of a putative G protein coupled receptor; (iii) the GUA-induced NO production, strongly reduced by cell pre-treatment with L-NAME, is negatively modulated by the EPAC-cAMP-CaMKII pathway, which causes the over-expression of GDA that, in turn, reduces the levels of GUA. These molecular mechanisms activated by GUA may be useful to support our previous observation showing that GUA improves learning and memory functions through the stimulation of NO signaling pathway, and underscore the therapeutic potential of oral administration of guanine for treating memory-related disorders
Prospect for Charge Current Neutrino Interactions Measurements at the CERN-PS
Tensions in several phenomenological models grew with experimental results on
neutrino/antineutrino oscillations at Short-Baseline (SBL) and with the recent,
carefully recomputed, antineutrino fluxes from nuclear reactors. At a
refurbished SBL CERN-PS facility an experiment aimed to address the open issues
has been proposed [1], based on the technology of imaging in ultra-pure
cryogenic Liquid Argon (LAr). Motivated by this scenario a detailed study of
the physics case was performed. We tackled specific physics models and we
optimized the neutrino beam through a full simulation. Experimental aspects not
fully covered by the LAr detection, i.e. the measurements of the lepton charge
on event-by-event basis and their energy over a wide range, were also
investigated. Indeed the muon leptons from Charged Current (CC) (anti-)neutrino
interactions play an important role in disentangling different phenomenological
scenarios provided their charge state is determined. Also, the study of muon
appearance/disappearance can benefit of the large statistics of CC muon events
from the primary neutrino beam. Results of our study are reported in detail in
this proposal. We aim to design, construct and install two Spectrometers at
"NEAR" and "FAR" sites of the SBL CERN-PS, compatible with the already proposed
LAr detectors. Profiting of the large mass of the two Spectrometers their
stand-alone performances have also been exploited.Comment: 70 pages, 38 figures. Proposal submitted to SPS-C, CER
Proposal for taking data with the KLOE-2 detector at the DANE collider upgraded in energy
This document reviews the physics program of the KLOE-2 detector at
DANE upgraded in energy and provides a simple solution to run the
collider above the -peak (up to 2, possibly 2.5 GeV). It is shown how a
precise measurement of the multihadronic cross section in the energy region up
to 2 (possibly 2.5) GeV would have a major impact on the tests of the Standard
Model through a precise determination of the anomalous magnetic moment of the
muon and the effective fine-structure constant at the scale. With a
luminosity of about cms, DANE upgraded in energy
can perform a scan in the region from 1 to 2.5 GeV in one year by collecting an
integrated luminosity of 20 pb (corresponding to a few days of data
taking) for single point, assuming an energy step of 25 MeV. A few years of
data taking in this region would provide important tests of QCD and effective
theories by physics with open thresholds for pseudo-scalar (like
the ), scalar (, etc...) and axial-vector (, etc...)
mesons; vector-mesons spectroscopy and baryon form factors; tests of CVC and
searches for exotics. In the final part of the document a technical solution
for the energy upgrade of DANE is proposed.Comment: 19 pages, 8 figure
Emulsion sheet doublets as interface trackers for the OPERA experiment
New methods for efficient and unambiguous interconnection between electronic
counters and target units based on nuclear photographic emulsion films have
been developed. The application to the OPERA experiment, that aims at detecting
oscillations between mu neutrino and tau neutrino in the CNGS neutrino beam, is
reported in this paper. In order to reduce background due to latent tracks
collected before installation in the detector, on-site large-scale treatments
of the emulsions ("refreshing") have been applied. Changeable Sheet (CSd)
packages, each made of a doublet of emulsion films, have been designed,
assembled and coupled to the OPERA target units ("ECC bricks"). A device has
been built to print X-ray spots for accurate interconnection both within the
CSd and between the CSd and the related ECC brick. Sample emulsion films have
been extensively scanned with state-of-the-art automated optical microscopes.
Efficient track-matching and powerful background rejection have been achieved
in tests with electronically tagged penetrating muons. Further improvement of
in-doublet film alignment was obtained by matching the pattern of low-energy
electron tracks. The commissioning of the overall OPERA alignment procedure is
in progress.Comment: 19 pages, 19 figure
- …
