155 research outputs found

    A solution to the 4-tachyon off-shell amplitude in cubic string field theory

    Get PDF
    We derive an analytic series solution of the elliptic equations providing the 4-tachyon off-shell amplitude in cubic string field theory (CSFT). From such a solution we compute the exact coefficient of the quartic effective action relevant for time dependent solutions and we derive the exact coefficient of the quartic tachyon coupling. The rolling tachyon solution expressed as a series of exponentials ete^t is studied both using level-truncation computations and the exact 4-tachyon amplitude. The results for the level truncated coefficients are shown to converge to those derived using the exact string amplitude. The agreement with previous work on the subject, both on the quartic tachyon coupling and on the CSFT rolling tachyon, is an excellent test for the accuracy of our off-shell solution.Comment: 26 pages, 5 figure

    The Subleading Term of the Strong Coupling Expansion of the Heavy-Quark Potential in a N=4\mathcal N=4 Super Yang-Mills Plasma

    Full text link
    Applying the AdS/CFT correspondence, the expansion of the heavy-quark potential of the N{\cal N} supersymmetric Yang-Mills theory at large NcN_c is carried out to the sub-leading term in the large 't Hooft coupling at nonzero temperatures. The strong coupling corresponds to the semi-classical expansion of the string-sigma model, the gravity dual of the Wilson loop operator, with the sub-leading term expressed in terms of functional determinants of fluctuations. The contributions of these determinants are evaluated numerically.Comment: 17 pages in JHEP3, typos fixed, updated version to be published in JHE

    The Final Fate of the Rolling Tachyon

    Get PDF
    We propose an alternative interpretation of the boundary state for the rolling tachyon, which may depict the time evolution of unstable D-branes in string theory. Splitting the string variable in the temporal direction into the classical part, which we may call "time" and the quantum one, we observe the time dependent behaviour of the boundary. Using the fermion representation of the rolling tachyon boundary state, we show that the boundary state correctly describes the time-dependent decay process of the unstable D-brane into a S-brane at the classical level.Comment: 9 pages, revte

    Exact results for static and radiative fields of a quark in N=4 super Yang-Mills

    Full text link
    In this work (which supersedes our previous preprint arXiv:1112.2345) we determine the expectation value of the N=4$ SU(N) SYM Lagrangian density operator in the presence of an infinitely heavy static particle in the symmetric representation of SU(N), by means of a D3-brane probe computation. The result that we obtain coincides with two previous computations of different observables, up to kinematical factors. We argue that these agreements go beyond the D-brane probe approximation, which leads us to propose an exact formula for the expectation value of various operators. In particular, we provide an expression for the total energy loss by radiation of a heavy particle in the fundamental representation.Comment: 14 pages. This submission supersedes our previous preprint arXiv:1112.2345. v2: numerical factors fixed, minor clarifications, added reference

    Can holography reproduce the QCD Wilson line?

    Full text link
    Recently a remarkable agreement was found between lattice simulations of long Wilson lines and behavior of the Nambu Goto string in flat space-time. However, the latter fails to fit the short distance behavior since it admits a tachyonic mode for a string shorter than a critical length. In this paper we examine the question of whether a classical holographic Wilson line can reproduce the lattice results for Wilson lines of any length. We determine the condition on the the gravitational background to admit a Coulombic potential at short distances. We analyze the system using three different renormalization schemes. We perform an explicit best fit comparison of the lattice results with the holographic models based on near extremal D3 and D4 branes, non-critical near extremal AdS6 model and the Klebanov Strassler model. We find that all the holographic models examined admit after renormalization a constant term in the potential. We argue that the curves of the lattice simulation also have such a constant term and we discuss its physical interpretation

    Precision calculation of 1/4-BPS Wilson loops in AdS(5) x S-5

    Get PDF
    We study the strong coupling behaviour of 1/4-BPS circular Wilson loops (a family of “latitudes”) in N=4 Super Yang-Mills theory, computing the one-loop corrections to the relevant classical string solutions in AdS5 ×S5. Supersymmetric localization provides an exact result that, in the large ’t Hooft coupling limit, should be reproduced by the sigma-model approach. To avoid ambiguities due to the absolute normalization of the string partition function, we compare the ratio between the generic latitude and the maximal 1/2-BPS circle: any measure-related ambiguity should simply cancel in this way. We use the Gel’fand-Yaglom method with Dirichlet boundary conditions to calculate the relevant functional determinants, that present some complications with respect to the standard circular case. After a careful numerical evaluation of our final expression we still find disagreement with the localization answer: the difference is encoded into a precise “remainder function”. We comment on the possible origin and resolution of this discordance

    Dynamics in nonlocal linear models in the Friedmann-Robertson-Walker metric

    Full text link
    A general class of cosmological models driven by a nonlocal scalar field inspired by the string field theory is studied. Using the fact that the considering linear nonlocal model is equivalent to an infinite number of local models we have found an exact special solution of the nonlocal Friedmann equations. This solution describes a monotonically increasing Universe with the phantom dark energy.Comment: 18 pages, 3 figures, a few misprints in Section 5 have been correcte

    Quark-antiquark potential in AdS at one loop

    Get PDF
    We derive an exact analytical expression for the one-loop partition function of a string in AdS_5xS^5 background with world-surface ending on two anti-parallel lines. All quantum fluctuations are shown to be governed by integrable, single-gap Lame' operators. The first strong coupling correction to the quark-antiquark potential, as defined in N=4 SYM, is derived as the sum of known mathematical constants and a one-dimensional integral representation. Its full numerical value can be given with arbitrary precision and confirms a previous result.Comment: 16 pages. Typos corrected, minor change

    Bouncing and Accelerating Solutions in Nonlocal Stringy Models

    Full text link
    A general class of cosmological models driven by a non-local scalar field inspired by string field theories is studied. In particular cases the scalar field is a string dilaton or a string tachyon. A distinguished feature of these models is a crossing of the phantom divide. We reveal the nature of this phenomena showing that it is caused by an equivalence of the initial non-local model to a model with an infinite number of local fields some of which are ghosts. Deformations of the model that admit exact solutions are constructed. These deformations contain locking potentials that stabilize solutions. Bouncing and accelerating solutions are presented.Comment: Minor corrections, references added, published in JHE
    corecore