155 research outputs found
A solution to the 4-tachyon off-shell amplitude in cubic string field theory
We derive an analytic series solution of the elliptic equations providing the
4-tachyon off-shell amplitude in cubic string field theory (CSFT). From such a
solution we compute the exact coefficient of the quartic effective action
relevant for time dependent solutions and we derive the exact coefficient of
the quartic tachyon coupling. The rolling tachyon solution expressed as a
series of exponentials is studied both using level-truncation
computations and the exact 4-tachyon amplitude. The results for the level
truncated coefficients are shown to converge to those derived using the exact
string amplitude. The agreement with previous work on the subject, both on the
quartic tachyon coupling and on the CSFT rolling tachyon, is an excellent test
for the accuracy of our off-shell solution.Comment: 26 pages, 5 figure
The Subleading Term of the Strong Coupling Expansion of the Heavy-Quark Potential in a Super Yang-Mills Plasma
Applying the AdS/CFT correspondence, the expansion of the heavy-quark
potential of the supersymmetric Yang-Mills theory at large is
carried out to the sub-leading term in the large 't Hooft coupling at nonzero
temperatures. The strong coupling corresponds to the semi-classical expansion
of the string-sigma model, the gravity dual of the Wilson loop operator, with
the sub-leading term expressed in terms of functional determinants of
fluctuations. The contributions of these determinants are evaluated
numerically.Comment: 17 pages in JHEP3, typos fixed, updated version to be published in
JHE
The Final Fate of the Rolling Tachyon
We propose an alternative interpretation of the boundary state for the
rolling tachyon, which may depict the time evolution of unstable D-branes in
string theory. Splitting the string variable in the temporal direction into the
classical part, which we may call "time" and the quantum one, we observe the
time dependent behaviour of the boundary. Using the fermion representation of
the rolling tachyon boundary state, we show that the boundary state correctly
describes the time-dependent decay process of the unstable D-brane into a
S-brane at the classical level.Comment: 9 pages, revte
Exact results for static and radiative fields of a quark in N=4 super Yang-Mills
In this work (which supersedes our previous preprint arXiv:1112.2345) we
determine the expectation value of the N=4$ SU(N) SYM Lagrangian density
operator in the presence of an infinitely heavy static particle in the
symmetric representation of SU(N), by means of a D3-brane probe computation.
The result that we obtain coincides with two previous computations of different
observables, up to kinematical factors. We argue that these agreements go
beyond the D-brane probe approximation, which leads us to propose an exact
formula for the expectation value of various operators. In particular, we
provide an expression for the total energy loss by radiation of a heavy
particle in the fundamental representation.Comment: 14 pages. This submission supersedes our previous preprint
arXiv:1112.2345. v2: numerical factors fixed, minor clarifications, added
reference
Can holography reproduce the QCD Wilson line?
Recently a remarkable agreement was found between lattice simulations of long
Wilson lines and behavior of the Nambu Goto string in flat space-time. However,
the latter fails to fit the short distance behavior since it admits a tachyonic
mode for a string shorter than a critical length. In this paper we examine the
question of whether a classical holographic Wilson line can reproduce the
lattice results for Wilson lines of any length. We determine the condition on
the the gravitational background to admit a Coulombic potential at short
distances. We analyze the system using three different renormalization schemes.
We perform an explicit best fit comparison of the lattice results with the
holographic models based on near extremal D3 and D4 branes, non-critical near
extremal AdS6 model and the Klebanov Strassler model. We find that all the
holographic models examined admit after renormalization a constant term in the
potential. We argue that the curves of the lattice simulation also have such a
constant term and we discuss its physical interpretation
Precision calculation of 1/4-BPS Wilson loops in AdS(5) x S-5
We study the strong coupling behaviour of 1/4-BPS circular Wilson loops (a family of “latitudes”) in N=4 Super Yang-Mills theory, computing the one-loop corrections to the relevant classical string solutions in AdS5 ×S5. Supersymmetric localization provides an exact result that, in the large ’t Hooft coupling limit, should be reproduced by the sigma-model approach. To avoid ambiguities due to the absolute normalization of the string partition function, we compare the ratio between the generic latitude and the maximal 1/2-BPS circle: any measure-related ambiguity should simply cancel in this way. We use the Gel’fand-Yaglom method with Dirichlet boundary conditions to calculate the relevant functional determinants, that present some complications with respect to the standard circular case. After a careful numerical evaluation of our final expression we still find disagreement with the localization answer: the difference is encoded into a precise “remainder function”. We comment on the possible origin and resolution of this discordance
Dynamics in nonlocal linear models in the Friedmann-Robertson-Walker metric
A general class of cosmological models driven by a nonlocal scalar field
inspired by the string field theory is studied. Using the fact that the
considering linear nonlocal model is equivalent to an infinite number of local
models we have found an exact special solution of the nonlocal Friedmann
equations. This solution describes a monotonically increasing Universe with the
phantom dark energy.Comment: 18 pages, 3 figures, a few misprints in Section 5 have been correcte
Quark-antiquark potential in AdS at one loop
We derive an exact analytical expression for the one-loop partition function
of a string in AdS_5xS^5 background with world-surface ending on two
anti-parallel lines. All quantum fluctuations are shown to be governed by
integrable, single-gap Lame' operators. The first strong coupling correction to
the quark-antiquark potential, as defined in N=4 SYM, is derived as the sum of
known mathematical constants and a one-dimensional integral representation. Its
full numerical value can be given with arbitrary precision and confirms a
previous result.Comment: 16 pages. Typos corrected, minor change
Bouncing and Accelerating Solutions in Nonlocal Stringy Models
A general class of cosmological models driven by a non-local scalar field
inspired by string field theories is studied. In particular cases the scalar
field is a string dilaton or a string tachyon. A distinguished feature of these
models is a crossing of the phantom divide. We reveal the nature of this
phenomena showing that it is caused by an equivalence of the initial non-local
model to a model with an infinite number of local fields some of which are
ghosts. Deformations of the model that admit exact solutions are constructed.
These deformations contain locking potentials that stabilize solutions.
Bouncing and accelerating solutions are presented.Comment: Minor corrections, references added, published in JHE
Roadmap on Wilson loops in 3d Chern-Simons-matter theories
This is a compact review of recent results on supersymmetric Wilson loops in ABJ(M) and related theories. It aims to be a quick introduction to the state of the art in the field and a discussion of open problems. It is divided into short chapters devoted to different questions and techniques. Some new results, perspectives and speculations are also presented. We hope this might serve as a baseline for further studies of this topic
- …
