10,536 research outputs found

    Electric-dipole-induced spin resonance in a lateral double quantum dot incorporating two single domain nanomagnets

    Full text link
    On-chip magnets can be used to implement relatively large local magnetic field gradients in na- noelectronic circuits. Such field gradients provide possibilities for all-electrical control of electron spin-qubits where important coupling constants depend crucially on the detailed field distribution. We present a double quantum dot (QD) hybrid device laterally defined in a GaAs / AlGaAs het- erostructure which incorporates two single domain nanomagnets. They have appreciably different coercive fields which allows us to realize four distinct configurations of the local inhomogeneous field distribution. We perform dc transport spectroscopy in the Pauli-spin blockade regime as well as electric-dipole-induced spin resonance (EDSR) measurements to explore our hybrid nanodevice. Characterizing the two nanomagnets we find excellent agreement with numerical simulations. By comparing the EDSR measurements with a second double QD incorporating just one nanomagnet we reveal an important advantage of having one magnet per QD: It facilitates strong field gradients in each QD and allows to control the electron spins individually for instance in an EDSR experi- ment. With just one single domain nanomagnet and common QD geometries EDSR can likely be performed only in one QD

    Direct Experimental Evidence for the Hybridization of Organic Molecular Orbitals with Substrate States at Interfaces: PTCDA on Silver

    Full text link
    We demonstrate the application of orbital k-space tomography for the analysis of the bonding occurring at metal-organic interfaces. Using angle-resolved photoelectron spectroscopy (ARPES), we probe the spatial structure of the highest occupied molecular orbital (HOMO) and the former lowest unoccupied molecular orbital (LUMO) of one monolayer 3,4,9,10-perylenetetracarboxylic-dianhydride (PTCDA) on Ag(110) and (111) surfaces and in particular the influence of the hybridization between the orbitals and the electronic states of the substrate. We are able to quantify and localize the substrate contribution to the LUMO and thus prove the metal-molecule hybrid character of this complex state.Comment: Accepted version, PRL. Supplemented figures, one additional reference, minor changes in wordin

    Stratospheric Variability and Trends in Models Used for the IPCC AR4

    Get PDF
    Atmosphere and ocean general circulation model (AOGCM) experiments for the Intergovernmental Panel on Climate Change Fourth Assessment Report (AR4) are analyzed to better understand model variability and assess the importance of various forcing mechanisms on stratospheric trends during the 20th century. While models represent the climatology of the stratosphere reasonably well in comparison with NCEP reanalysis, there are biases and large variability among models. In general, AOGCMs are cooler than NCEP throughout the stratosphere, with the largest differences in the tropics. Around half the AOGCMs have a top level beneath ~2 hPa and show a significant cold bias in their upper levels (~10 hPa) compared to NCEP, suggesting that these models may have compromised simulations near 10 hPa due to a low model top or insufficient stratospheric levels. In the lower stratosphere (50 hPa), the temperature variability associated with large volcanic eruptions is absent in about half of the models, and in the models that do include volcanic aerosols, half of those significantly overestimate the observed warming. There is general agreement on the vertical structure of temperature trends over the last few decades, differences between models are explained by the inclusion of different forcing mechanisms, such as stratospheric ozone depletion and volcanic aerosols. However, even when human and natural forcing agents are included in the simulations, significant differences remain between observations and model trends, particularly in the upper tropical troposphere (200 hPa–100 hPa), where, since 1979, models show a warming trend and the observations a cooling trend

    Local availability and long-range trade: the worked stone assemblage

    Get PDF
    Inter disciplinary study of major excavation assemblage from Norse settlement site in Orkney. Combines methodological and typological developments with scientific discussion

    Evidence of momentum dependent hybridization in Ce2Co0.8Si3.2

    Full text link
    We studied the electronic structure of the Kondo lattice system Ce2Co0.8Si3.2 by angle-resolved photoemission spectroscopy (ARPES). The spectra obtained below the coherence temperature consist of a Kondo resonance, its spin-orbit partner and a number of dispersing bands. The quasiparticle weight related to the Kondo peak depends strongly on Fermi vectors associated with bulk bands. This indicates a highly anisotropic hybridization between conduction band and 4f electrons - V_{cf} in Ce2Co0.8Si3.2.Comment: 6 page

    The transient response of global-mean precipitation to increasing carbon dioxide levels

    Get PDF
    The transient response of global-mean precipitation to an increase in atmospheric carbon dioxide levels of 1% yr(-1) is investigated in 13 fully coupled atmosphere-ocean general circulation models (AOGCMs) and compared to a period of stabilization. During the period of stabilization, when carbon dioxide levels are held constant at twice their unperturbed level and the climate left to warm, precipitation increases at a rate of similar to 2.4% per unit of global-mean surface-air-temperature change in the AOGCMs. However, when carbon dioxide levels are increasing, precipitation increases at a smaller rate of similar to 1.5% per unit of global-mean surface-air-temperature change. This difference can be understood by decomposing the precipitation response into an increase from the response to the global surface-temperature increase (and the climate feedbacks it induces), and a fast atmospheric response to the carbon dioxide radiative forcing that acts to decrease precipitation. According to the multi-model mean, stabilizing atmospheric levels of carbon dioxide would lead to a greater rate of precipitation change per unit of global surface-temperature change

    Drug interactions may be important risk factors for methotrexate neurotoxicity, particularly in pediatric leukemia patients

    Get PDF
    Purpose: Methotrexate administration is associated with frequent adverse neurological events during treatment for childhood acute lymphoblastic leukemia. Here, we present evidence to support the role of common drug interactions and low vitamin B12 levels in potentiating methotrexate neurotoxicity. Methods: We review the published evidence and highlight key potential drug interactions as well as present clinical evidence of severe methotrexate neurotoxicity in conjunction with nitrous oxide anesthesia and measurements of vitamin B12 levels among pediatric leukemia patients during therapy. Results: We describe a very plausible mechanism for methotrexate neurotoxicity in pediatric leukemia patients involving reduction in methionine and consequential disruption of myelin production. We provide evidence that a number of commonly prescribed drugs in pediatric leukemia management interact with the same folate biosynthetic pathways and/or reduce functional vitamin B12 levels and hence are likely to increase the toxicity of methotrexate in these patients. We also present a brief case study supporting out hypothesis that nitrous oxide contributes to methotrexate neurotoxicity and a nutritional study, showing that patients. Conclusions: Use of nitrous oxide in pediatric leukemia patients at the same time as methotrexate use should be avoided especially as many suitable alternative anesthetic agents exist. Clinicians should consider monitoring levels of vitamin B12 in patients suspected of having methotrexate- induced neurotoxic effects

    Vector meson spectral function and dilepton rate in an effective mean field model

    Full text link
    We have studied the vector meson spectral function (VMSF) in a hot and dense medium within an effective QCD model namely the Nambu-Jona-Lasinio (NJL) and its Polyakov Loop extended version (PNJL) with and without the effect of isoscalar vector interaction (IVI). The effect of the IVI has been taken into account using the ring approximation. We obtained the dilepton production rate (DPR) using the VMSF and observed that at moderate temperature it is enhanced in the PNJL model as compared to the NJL and Born rate due to the suppression of color degrees of freedom.Comment: 5 pages, 7 figures, conference proceedings of the XXI DAE-BRNS HEP Symposium, IIT Guwahati, December 2014; to appear in 'Springer Proceedings in Physics Series
    corecore