8,211 research outputs found
Angular Momentum Changes Due to Direct Impact Accretion in a Simplified Binary System
We model a circular mass-transferring binary system to calculate the exchange
of angular momentum between stellar spins and the orbit due to direct impact of
the mass transfer stream onto the surface of the accretor. We simulate mass
transfer by calculating the ballistic motion of a point mass ejected from the
point of the donor star, conserving the total linear and angular momentum
of the system, and treating the stars as uniform density spheres with main
sequence radii determined by their masses. We show that, contrary to previous
assumptions in the literature, direct impact does not always act as a sink of
orbital angular momentum and may in fact increase it by facilitating the
transfer of angular momentum from the spin of the donor to the orbit. Here, we
show an example of the exchange of angular momentum, as well as a measure of
the orbital angular momentum changes for a variety of binary star systems with
main sequence components.Comment: 2 pages, 2 figures, Conference Proceedings for the International
Conference on Binaries, Mykonos, Greece. Updated Version of Fig. 1b,
correcting a scaling error. Results remain unchanged, but the numerical
scaling factors have been decrease
FALCON: a concept to extend adaptive optics corrections to cosmological fields
FALCON is an original concept for a next generation spectrograph at ESO VLT
or at future ELTs. It is a spectrograph including multiple small integral field
units (IFUs) which can be deployed within a large field of view such as that of
VLT/GIRAFFE. In FALCON, each IFU features an adaptive optics correction using
off-axis natural reference stars in order to combine, in the 0.8-1.8 \mu m
wavelength range, spatial and spectral resolutions (0.1-0.15 arcsec and
R=10000+/-5000). These conditions are ideally suited for distant galaxy
studies, which should be done within fields of view larger than the galaxy
clustering scales (4-9 Mpc), i.e. foV > 100 arcmin2. Instead of compensating
the whole field, the adaptive correction will be performed locally on each IFU.
This implies to use small miniaturized devices both for adaptive optics
correction and wavefront sensing. Applications to high latitude fields imply to
use atmospheric tomography because the stars required for wavefront sensing
will be in most of the cases far outside the isoplanatic patch.Comment: To appear in the Backaskog "Second Workshop on ELT" SPIE proceeding
Analisis Yuridis Tentang Hukum Asuransi Dalam Transaksi Electronic Commerce Melalui Perspektif Kitab Undang-undang Hukum Dagang
Seiring dengan perkembangan teknologi dan informasi di dunia, berbagai hal baru muncul di dalam kehidupan kita sehari-hari. Salah satunya adalah konsep jual beli secara online melalui internet dengan menggunakan e-commerce . Dengan e-commerce konsep jual beli tradisonal yang mempertemukan pembeli dan penjual dalam satu ruangan berubah menjadi konsep jual beli jarak jauh atau telemarketing. Dengan adanya konsep ini, tentu saja baik penjual dan pembeli akan merasa di untungkan, karena transaksi jual beli yang terjadi dapat dilakukan 24 jam penuh dengan tidak dibatasi oleh wilayah tertentu. Akan tetapi selain memberikan keuntungan, tentu saja konsep jual beli jarak jauh melalui e-commerce juga dapat menimbulkan banyak resiko kerugian, salah satunya adalah serangan cyber crime yang dapat menyebabkan penyalahgunaan data para pihak dalam e-commerce sehingga mengalami kerugian. Penelitian dalam Artikel ilmiah ini dilakukan untuk dapat mengetahui dan menganalisis bagaimana Kitab Undang-Undang Hukum Dagang (KUHD) mengatur Asuransi yang berhubungan dengan transaksi elektronik melalui internet (e-commerce), mengetahui dan menganalisis pihak - pihak yang dapat dijadikan subyek dan obyek asuransi dalam transaksi elektronik melalui internet (ecommerce), serta menganalisis penyebab perlunya asuransi dalam transaksi electronic commerce diatur secara khusus di dalam peraturan Perundang-undangan di Indonesia. Metode penelitian yang di pakai dalam penulisan Artikel ilmiah ini adalah metode Penelitian hukum normatif yang bertujuan untuk menemukan landasan hukum yang jelas dalam meletakkan persoalan yang diangkat, dalam perspektif Kitab Undang-Undang Hukum Dagang, khususnya yang terkait dengan masalah penerapan asuransi dalam transaksi e-commerce. Berdasarkan pembahasan terhadap hasil penelitian terungkap bahwa dari pengertian dan batasan tentang asuransi di dalam KUHD, transaksi e-commerce merupakan obyek yang dapat di asuransikan, karena segala kegiatan didalam transaksi e-commerce, dapat menimbulkan kehilangan atau kerusakan bagi para pihak yang ada didalamnya. Pengaturan asuransi mengenai e-commerce di dalam KUHD sebenarnya perlu diatur secara rinci, sehingga pemerintah hendaknya melakukan revisi Undang-Undang Nomor 2 Tahun 1992 tentang Usaha Pengasuransian, sehingga dapat memberikan pengaturan jelas mengenai asuransi dalam transaksi bisnis e-commerce atau cyber insurance
Dynamical Interactions of Planetary Systems in Dense Stellar Environments
We study dynamical interactions of star--planet binaries with other single
stars. We derive analytical cross sections for all possible outcomes, and
confirm them with numerical scattering experiments. We find that a wide mass
ratio in the binary introduces a region in parameter space that is inaccessible
to comparable-mass systems, in which the nature of the dynamical interaction is
fundamentally different from what has traditionally been considered in the
literature on binary scattering. We study the properties of the planetary
systems that result from the scattering interactions for all regions of
parameter space, paying particular attention to the location of the
"hard--soft" boundary. The structure of the parameter space turns out to be
significantly richer than a simple statement of the location of the
"hard--soft" boundary would imply. We consider the implications of our
findings, calculating characteristic lifetimes for planetary systems in dense
stellar environments, and applying the results to previous analytical studies,
as well as past and future observations. Recognizing that the system PSR
B1620-26 in the globular cluster M4 lies in the "new" region of parameter
space, we perform a detailed analysis quantifying the likelihood of different
scenarios in forming the system we see today.Comment: Accepted for publication in ApJ. Minor changes to reflect accepted
version. 14 pages, 14 figure
Indirect effects of primary prey population dynamics on alternative prey
We develop a theory of generalist predation showing how alternative prey
species are affected by changes in both mean abundance and variability
(coefficient of variation) of their predator's primary prey. The theory is
motivated by the indirect effects of cyclic rodent populations on
ground-breeding birds, and developed through progressive analytic
simplifications of an empirically-based model. It applies nonetheless to many
other systems where primary prey have fast life-histories and can become
locally superabundant, which facilitates impact on alternative prey species. In
contrast to classic apparent competition theory based on symmetric
interactions, our results suggest that predator effects on alternative prey
should generally decrease with mean primary prey abundance, and increase with
primary prey variability (low to high CV) - unless predators have strong
aggregative responses, in which case these results can be reversed.
Approximations of models including predator dynamics (general numerical
response with possible delays) confirm these results but further suggest that
negative temporal correlation between predator and primary prey is harmful to
alternative prey. We find in general that predator numerical responses are
crucial to predict the response of ecosystems to changes in key prey species
exhibiting outbreaks, and extend the apparent competition/mutualism theory to
asymmetric interactions
High Orbital Eccentricities of Extrasolar Planets Induced by the Kozai Mechanism
One of the most remarkable properties of extrasolar planets is their high
orbital eccentricities. Observations have shown that at least 20% of these
planets, including some with particularly high eccentricities, are orbiting a
component of a wide binary star system. The presence of a distant binary
companion can cause significant secular perturbations to the orbit of a planet.
In particular, at high relative inclinations, a planet can undergo a
large-amplitude eccentricity oscillation. This so-called "Kozai mechanism" is
effective at a very long range, and its amplitude is purely dependent on the
relative orbital inclination. In this paper, we address the following simple
question: assuming that every host star with a detected giant planet also has a
(possibly unseen, e.g., substellar) distant companion, with reasonable
distributions of orbital parameters and masses, how well could secular
perturbations reproduce the observed eccentricity distribution of planets? Our
calculations show that the Kozai mechanism consistently produces an excess of
planets with very high (e >0.6) and very low (e < 0.1) eccentricities. The
paucity of near-circular orbits in the observed sample cannot be explained
solely by the Kozai mechanism, because, even with high enough inclinations, the
Kozai mechanism often fails to produce significant eccentricity perturbations
when there are other competing sources of orbital perturbations on secular
timescales, such as general relativity. On the other hand, the Kozai mechanism
can produce many highly eccentric orbits. Indeed the overproduction of high
eccentricities observed in our models could be combined with plausible
circularizing mechanisms (e.g., friction from residual gas) to create more
intermediate eccentricities (e=0.1-0.6).Comment: 24 pages, 6 figures, ApJ, in press, minor changes to reflect the
accepted versio
Stellar clusters in the inner Galaxy and their correlation with cold dust emission
Stars are born within dense clumps of giant molecular clouds, constituting
young stellar agglomerates known as embedded clusters, which only evolve into
bound open clusters under special conditions. We statistically study all
embedded clusters (ECs) and open clusters (OCs) known so far in the inner
Galaxy, investigating particularly their interaction with the surrounding
molecular environment and the differences in their evolution. We first compiled
a merged list of 3904 clusters from optical and infrared clusters catalogs in
the literature, including 75 new (mostly embedded) clusters discovered by us in
the GLIMPSE survey. From this list, 695 clusters are within the Galactic range
|l| < 60 deg and |b| < 1.5 deg covered by the ATLASGAL survey, which was used
to search for correlations with submm dust continuum emission tracing dense
molecular gas. We defined an evolutionary sequence of five morphological types:
deeply embedded cluster (EC1), partially embedded cluster (EC2), emerging open
cluster (OC0), OC still associated with a submm clump in the vicinity (OC1),
and OC without correlation with ATLASGAL emission (OC2). Together with this
process, we performed a thorough literature survey of these 695 clusters,
compiling a considerable number of physical and observational properties in a
catalog that is publicly available. We found that an OC defined observationally
as OC0, OC1, or OC2 and confirmed as a real cluster is equivalent to the
physical concept of OC (a bound exposed cluster) for ages in excess of ~16 Myr.
Some observed OCs younger than this limit can actually be unbound associations.
We found that our OC and EC samples are roughly complete up to ~1 kpc and ~1.8
kpc from the Sun, respectively, beyond which the completeness decays
exponentially. Using available age estimates for a few ECs, we derived an upper
limit of 3 Myr for the duration of the embedded phase... (Abridged)Comment: 39 pages, 9 figures. Accepted for publication in A&A on Sept 16,
2013. The catalog will be available at the CDS after official publication of
the articl
Massive motion in Brans-Dicke geometry and beyond
Gravity theories that can be viewed as dynamics for area metric manifolds,
for which Brans-Dicke theory presents a recently studied example, require for
their physical interpretation the identification of the distinguished curves
that serve as the trajectories of light and massive matter. Complementing
previous results on the propagation of light, we study effective massive point
particle motion. We show that the relevant geometrical structure is a special
Finsler norm determined by the area metric, and that massive point particles
follow Finsler geodesics.Comment: 12 page
A RIAM/lamellipodin-talin-integrin complex forms the tip of sticky fingers that guide cell migration.
The leading edge of migrating cells contains rapidly translocating activated integrins associated with growing actin filaments that form 'sticky fingers' to sense extracellular matrix and guide cell migration. Here we utilized indirect bimolecular fluorescence complementation to visualize a molecular complex containing a Mig-10/RIAM/lamellipodin (MRL) protein (Rap1-GTP-interacting adaptor molecule (RIAM) or lamellipodin), talin and activated integrins in living cells. This complex localizes at the tips of growing actin filaments in lamellipodial and filopodial protrusions, thus corresponding to the tips of the 'sticky fingers.' Formation of the complex requires talin to form a bridge between the MRL protein and the integrins. Moreover, disruption of the MRL protein-integrin-talin (MIT) complex markedly impairs cell protrusion. These data reveal the molecular basis of the formation of 'sticky fingers' at the leading edge of migrating cells and show that an MIT complex drives these protrusions
Effect of pine bark and compost on the biological denitrification process of non-hazardous landfill leachate: Focus on the microbiology
In an attempt to optimize the cost-efficiency of landfill leachate treatment by biological denitrification process, our study focused on finding low-cost alternatives to traditional expensive chemicals such as composted garden refuse and pine bark, which are both available in large amount in South African landfill sites. The overall objective was to assess the behaviour of the bacterial community in relation to each substrate while treating high strength landfill leachates. Denitrification processes in fixed bed reactors were simulated at laboratory scale using anaerobic batch tests with immature compost and pine bark. High strength leachate was simulated using a solution of water and nitrate at a concentration of 500 mg l−1. Results suggest that pine bark released large amounts of phenolic compounds and hydroxylated benzene rings, which both can delay the acclimatization time and inhibit the biological denitrification (only 30% efficiency). Furthermore, presence of potential pathogens like Enterobacter and Pantoea agglomerans prevents the applicability of the pine bark in full-scale operations. On the other hand, lightly composted garden refuse (CGR) offered an adequate substrate for the formation of a biofilm necessary to complete the denitrification process (total nitrate removal observed within 7 days). CGR further contributed to a rapid establishment of an active consortium of denitrifiers including Acinetobacter, Rhizobium, Thermomonas, Rheinheimera, Phaeospirillum and Flavobacterium. Clearly the original composition, nature, carbon to nitrogen ratio (C/N) and degree of maturity and stability of the substrates play a key role in the denitrification process, impacting directly on the development of the bacterial population and, therefore, on the long-term removal efficiency
- …
