117 research outputs found
Integrated Multidisciplinary Approach for the Study of the Geothermal Potential of Umbria (Central Italy)
Lava flow field development and lava tube formation during the 1858–1861 eruption of Vesuvius (Italy), unravelled by historical documentation, lidar data and 3D mapping
Somma-Vesuvius is well known for its powerful Plinian explosive eruptions, however during the last eruptive cycle (1631–1944), persistent activity took place on the stratovolcano as mild and violent Strombolian, and effusive eruptions, forming more than one hundred lava flow fields. An important mechanism of lava transport within lava flow fields is the formation and development of lava tubes. The presence of lava tubes in a flow field can greatly increase their distance of emplacement. Observations of lava tubes at Vesuvius have been documented in historical records and speleological reports but no modern scientific studies are available. This work focuses on lava tubes formed in the compound lava flow field of the long-lived 1858 eruption (from 27 May 1858 to 12 April 1861) that was fed by seven eruptive fissures. The temporal and spatial evolution of the 1858 lava flow field was reconstructed using historical documentation. The exposed lava flow field surface was analysed using a 1-m resolution lidar Digital Surface Model (DSM). Surveys to fully digitize the interior and the overlying surface of the largest lava tube found in the 1858 lava flow field were conducted using a terrestrial laser scanner, optical cameras, and an Unmanned Aerial Vehicle (UAV). The accurate 3D model obtained was used to precisely quantify the inner dimensions and to better constrain the morphologies of the lava tube. Observed internal features were described and used to gain information on the formation and activity of the lava tube. Our data allowed us to understand that the described lava tube formed as an inflated lava flow inside which lava flowed through during an extended period ultimately draining out completely at the end of the eruption. Understanding how lava flow fields develop and how lava tubes form on Vesuvius is crucial to re-evaluate the last effusive activity of the volcano and its impact on hazard assessment
Hydrogeochemistry of surface and spring waters in the surroundings of the CO2 injection site at Hontomín–Huermeces (Burgos, Spain)
In this paper the very first geochemical and isotopic data related to surface and spring waters and dissolved gases in the area of Hontomín–Huermeces (Burgos, Spain) are presented and discussed. Hontomín–Huermeces has been selected as a pilot site for the injection of pure (>99%) CO2. Injection and monitoring wells are planned to be drilled close to 6 oil wells completed in the 1980s for which detailed stratigraphical logs are available, indicating the presence of a confined saline aquifer at the depth of about 1500 m into which less than 100,000 tons of iquid CO2 will be injected, possibly starting in 2013.
The chemical and features of the spring waters suggest that they are related to a shallow hydrogeological system as the concentration of the Total Dissolved Solids approaches 800 mg/L with a Ca2+(Mg2+)-HCO3− composition, similar to that of the surface waters. This is also supported by the oxygen and hydrogen isotopic ratios that have values lying between those of the Global and the Mediterranean Meteoric Water Lines. Some spring waters close to the oil wells are haracterized by relatively high concentrations of NO3− (up to 123 mg/L), unequivocally suggesting an anthropogenic source that adds to the main water–rock interaction processes. The latter can be referred to Ca-Mg-carbonate and, at a minor extent, Al-silicate dissolution, being the outcropping sedimentary rocks characterized by Palaeozoic to
Quaternary rocks. Anomalous concentrations of Cl−, SO42−, As, B and Ba were measured in two springs discharging a few hundred meters from the oil wells and in the Rio Ubierna. These contents are significantly higher than those of the whole set of the studied waters and are possibly indicative of mixing processes, although at very low extent, between deep and shallow aquifers. No evidence of deep-seated
gases interacting with the Hontomín–Huermeces waters was recognized in the chemistry of the disolved gases. This is likely due to the fact that they are mainly characterized by an atmospheric source as highlighted by the high contents of N2, O2 and Ar and by N2/Ar ratios that approach that of ASW (Air Saturated Water) and possibly masking any contribution related to a deep source. Nevertheless, significant concentrations (up to 63% by vol.) of isotopically negative CO2 (<−17.7‰ V-PDB) were found in some
water samples, likely related to a biogenic source.
The geochemical and isotopic data of this work are of particular importance when a monitoring program will be established to verify whether CO2 leakages, induced by the injection of this greenhouse gas, may be affecting the quality of the waters in the shallow hydrological circuits at Hontomín–Huermeces. In this respect, carbonate chemistry, the isotopic carbon of dissolved CO2 and TDIC (Total Dissolved Inorganic Carbon) and selected trace elements can be considered as useful parameters to trace the migration of the injected CO2 into near-surface environments
Handgrip strength predicts persistent walking recovery after hip fracture surgery
Background In older people, hip fractures often lead to disability and death. We evaluated handgrip strength, an objective measure of physical function for bedridden patients, as a predictor of walking recovery in the year after fracture surgery. Methods This multicenter prospective cohort study included 504 patients, aged 70 years or more, who were admitted to the hospital for hip fracture surgery and were formerly able to walk independently. A multidimensional geriatric evaluation that included a physical examination, Short Portable Mental Status Questionnaire, Geriatric Depression Scale, Charlson Index, Basic Activities of Daily Living, and grip strength was administered at the time of admission. Follow-ups were performed every 3 months for 1 year after surgery to assess functional status and survival. The walking recovery probability was evaluated using multivariable logistic regression models. Results The mean age of the participants was 85.3 ± 5.5 years, and 76.1% of the participants were women. The mean grip strength was greater in men (β: 6.6 ± 0.62, P <.001) and was directly related to the Short Portable Mental Status Questionnaire results (P <.001), Basic Activities of Daily Living results (P <.001), serum vitamin D levels (P =.03), and time before surgery (P <.001), whereas it was inversely related to age (P <.001), Geriatric Depression Scale score (P <.001), and Charlson Index (P <.001). After adjusting for confounders, the grip strength was directly associated with the probability of both incident and persistent walking recovery (odds ratio highest tertile vs lowest tertile, 2.84, confidence interval, 1.76-4.59 and 2.79, confidence interval, 1.35-5.79, respectively). Conclusions In older patients with hip fractures, early grip strength evaluation might provide important prognostic information regarding the patient's future functional trajectory. © 2013 Elsevier Inc. All rights reserved
effects of the s process on fe group elements in meteorites
In the present paper we investigate the possible connection between s-process nucleosynthesis occurring during the asymptotic giant branch (AGB) phase of low-mass stars (LMS) and the isotopic anomalies of the "Fe-group" elements observed in several macroscopic samples of meteorites or in grains formed as circumstellar condensates (hereafter CIRCONs). The available measurements of chromium, iron, and nickel are well reproduced by stellar models, which account for the largest shifts in the heaviest isotopes of each element: in particular ^(54)Cr, ^(58)Fe, and ^(64)Ni. Moreover, many circumstellar condensates reflect ^(50)Ti excesses and some production of ^(46, 47, 49)Ti, as predicted by slow-neutron captures in AGB stars. Nevertheless, some difficulties are found in comparing theoretical calculations of s-process nucleosynthesis with calcium, silicon, and zinc isotopic anomalies
- …
