3,652 research outputs found

    SRA: Fast Removal of General Multipath for ToF Sensors

    Full text link
    A major issue with Time of Flight sensors is the presence of multipath interference. We present Sparse Reflections Analysis (SRA), an algorithm for removing this interference which has two main advantages. First, it allows for very general forms of multipath, including interference with three or more paths, diffuse multipath resulting from Lambertian surfaces, and combinations thereof. SRA removes this general multipath with robust techniques based on L1L_1 optimization. Second, due to a novel dimension reduction, we are able to produce a very fast version of SRA, which is able to run at frame rate. Experimental results on both synthetic data with ground truth, as well as real images of challenging scenes, validate the approach

    Deep Burst Denoising

    Full text link
    Noise is an inherent issue of low-light image capture, one which is exacerbated on mobile devices due to their narrow apertures and small sensors. One strategy for mitigating noise in a low-light situation is to increase the shutter time of the camera, thus allowing each photosite to integrate more light and decrease noise variance. However, there are two downsides of long exposures: (a) bright regions can exceed the sensor range, and (b) camera and scene motion will result in blurred images. Another way of gathering more light is to capture multiple short (thus noisy) frames in a "burst" and intelligently integrate the content, thus avoiding the above downsides. In this paper, we use the burst-capture strategy and implement the intelligent integration via a recurrent fully convolutional deep neural net (CNN). We build our novel, multiframe architecture to be a simple addition to any single frame denoising model, and design to handle an arbitrary number of noisy input frames. We show that it achieves state of the art denoising results on our burst dataset, improving on the best published multi-frame techniques, such as VBM4D and FlexISP. Finally, we explore other applications of image enhancement by integrating content from multiple frames and demonstrate that our DNN architecture generalizes well to image super-resolution

    On the mixing property for a class of states of relativistic quantum fields

    Full text link
    Let ω\omega be a factor state on the quasi-local algebra A\cal{A} of observables generated by a relativistic quantum field, which in addition satisfies certain regularity conditions (satisfied by ground states and the recently constructed thermal states of the P(ϕ)2P(\phi)_2 theory). We prove that there exist space and time translation invariant states, some of which are arbitrarily close to ω\omega in the weak* topology, for which the time evolution is weakly asymptotically abelian

    Maximizing nearest neighbour entanglement in finitely correlated qubit--chains

    Full text link
    We consider translationally invariant states of an infinite one dimensional chain of qubits or spin-1/2 particles. We maximize the entanglement shared by nearest neighbours via a variational approach based on finitely correlated states. We find an upper bound of nearest neighbour concurrence equal to C=0.434095 which is 0.09% away from the bound C_W=0.434467 obtained by a completely different procedure. The obtained state maximizing nearest neighbour entanglement seems to approximate the maximally entangled mixed states (MEMS). Further we investigate in detail several other properties of the so obtained optimal state.Comment: 12 pages, 4 figures, 2nd version minor change

    Mechanisms of spin-polarized current-driven magnetization switching

    Full text link
    The mechanisms of the magnetization switching of magnetic multilayers driven by a current are studied by including exchange interaction between local moments and spin accumulation of conduction electrons. It is found that this exchange interaction leads to two additional terms in the Landau-Lifshitz-Gilbert equation: an effective field and a spin torque. Both terms are proportional to the transverse spin accumulation and have comparable magnitudes

    Field dependence of magnetization reversal by spin transfer

    Full text link
    We analyse the effect of the applied field (Happl) on the current-driven magnetization reversal in pillar-shaped Co/Cu/Co trilayers, where we observe two different types of transition between the parallel (P) and antiparallel (AP) magnetic configurations of the Co layers. If Happl is weaker than a rather small threshold value, the transitions between P and AP are irreversible and relatively sharp. For Happl exceding the threshold value, the same transitions are progressive and reversible. We show that the criteria for the stability of the P and AP states and the experimentally observed behavior can be precisely accounted for by introducing the current-induced torque of the spin transfer models in a Landau-Lifschitz-Gilbert equation. This approach also provides a good description for the field dependence of the critical currents

    Study of the finite temperature transition in 3-flavor QCD using the R and RHMC algorithms

    Get PDF
    We study the finite temperature transition in QCD with three flavors of equal masses using the R and RHMC algorithm on lattices with temporal extent N_{\tau}=4 and 6. For the transition temperature in the continuum limit we find r_0 T_c=0.429(8) for the light pseudo-scalar mass corresponding to the end point of the 1st order transition region. When comparing the results obtained with the R and RHMC algorithms for p4fat3 action we see no significant step-size errors down to a lightest pseudo-scalar mass of m_{ps} r_0=0.4.Comment: 13 pages, RevTeX, 10 figure

    Tackling 3D ToF Artifacts Through Learning and the FLAT Dataset

    Full text link
    Scene motion, multiple reflections, and sensor noise introduce artifacts in the depth reconstruction performed by time-of-flight cameras. We propose a two-stage, deep-learning approach to address all of these sources of artifacts simultaneously. We also introduce FLAT, a synthetic dataset of 2000 ToF measurements that capture all of these nonidealities, and allows to simulate different camera hardware. Using the Kinect 2 camera as a baseline, we show improved reconstruction errors over state-of-the-art methods, on both simulated and real data.Comment: ECCV 201

    New order parameters in the Potts model on a Cayley tree

    Full text link
    For the qq-state Potts model new order parameters projecting on a group of spins instead of a single spin are introduced. On a Cayley tree this allows the physical interpretation of the Potts model at noninteger values q of the number of states. The model can be solved recursively. This recursion exhibits chaotic behaviour changing qualitatively at critical values of q0q_0 . Using an additional order parameter belonging to a group of zero extrapolated size the additional ordering is related to a percolation problem. This percolation distinguishes different phases and explains the critical indices of percolation class occuring at the Peierls temperature.Comment: 16 pages TeX, 5 figures PostScrip

    LICOR-Liquid Columns' Resonances

    Get PDF
    The aim of the experiment LICOR was the investigation of the axial resonances oi cylindrical liquid columns supported by equal circular coaxiaJ disks. In preparation ot the D-2 experiment a •heoreiical model has been developed, which exactly describes the small amplitude oscillations of finite cylindrical columns between coaxial circular disks. In addition, in terrestrial experiments the resonance frequencies of small liquid columns with up to 5 mm in diameter have been determined and investigations with density-matched liquids (silicon oil in a waierlmethanol mixture) have been performed. For the D-2 experiment LICOR the front disk and the rear disk lor use in the AFPM have been constructed and equipped with pressure sensors and the necessary electronics. The pressure exerted by the oscillating liquid column on trie supporting disks vsas as low as 10 Pa. Since the data downlink of the Materials Research Laboratory was just one signal oer second and channel, it was necessary to determine amplitude and phase of the pressure already in the LICOR disks. The D-2 experiment has been successfully performed. It has fully confirmed the theoretical models and remarkably supplements the experiments on small liquid columns and on density-matched columns
    corecore