5,418 research outputs found
A personal historic perspective on the role of chloride in skeletal and cardiac muscle
During the early decades of the last century, skeletal muscle was held to be impermeable to chloride ions. This theory, based on shaky grounds, was famously falsified by Boyle and Conway in 1941. Two decades later and onwards, the larger part of the resting conductance of skeletal muscle was found to be due to chloride ions, sensitive to the chemical environment, and to be time‐and‐voltage dependent. So, much of the groundwork for the physiological role of chloride ions in skeletal muscle was laid before the game‐changing discovery of chloride channels. The early history of the role of chloride in cardiac muscle, and work on the relative permeability to foreign anions of different muscles are also here covered from a personal perspective
Microstructural characterisation of five simulated archaeological copper alloys using light microscopy, scanning electron microscopy, energy dispersive X-ray microanalysis and secondary ion mass spectrometry
Milieu-adopted in vitro and in vivo differentiation of mesenchymal tissues derived from different adult human CD34-negative progenitor cell clones
Adult mesenchymal stem cells with multilineage differentiation potentially exist in the bone marrow, but have also been isolated from the peripheral blood. The differentiation of stem cells after leaving their niches depends predominately on the local milieu and its new microenvironment, and is facilitated by soluble factors but also by the close cell-cell interaction in a three-dimensional tissue or organ system. We have isolated CD34-negative, mesenchymal stem cell lines from human bone marrow and peripheral blood and generated monoclonal cell populations after immortalization with the SV40 large T-antigen. The cultivation of those adult stem cell clones in an especially designed in vitro environment, including self-constructed glass capillaries with defined growth conditions, leads to the spontaneous establishment of pleomorphic three-dimensional cell aggregates ( spheroids) from the monoclonal cell population, which consist of cells with an osteoblast phenotype and areas of mineralization along with well-vascularized tissue areas. Modifications of the culture conditions favored areas of bone-like calcifications. After the transplantation of the at least partly mineralized human spheroids into different murine soft tissue sites but also a dorsal skinfold chamber, no further bone formation could be observed, but angiogenesis and neovessel formation prevailed instead, enabling the transplanted cells and cell aggregates to survive. This study provides evidence that even monoclonal adult human CD34-negative stem cells from the bone marrow as well as peripheral blood can potentially differentiate into different mesenchymal tissues depending on the local milieu and responding to the needs within the microenvironment. Copyright (C) 2005 S. Karger AG, Basel
Visualization of leukocyte transendothelial and interstitial migration using reflected light oblique transillumination in intravital video microscopy
Dynamic visualization of the intravascular events leading to the extravasation of leukocytes into tissues by intravital microscopy has significantly expanded our understanding of the underlying molecular processes. In contrast, the detailed observation of leukocyte transendothelial and interstitial migration in vivo has been hampered by the poor image contrast of cells within turbid media that is obtainable by conventional brightfield microscopy. Here we present a microscopic method, termed reflected light oblique transillumination microscopy, that makes use of the optical interference phenomena generated by oblique transillumination to visualize subtle gradients of refractive indices within tissues for enhanced image contrast. Using the mouse cremaster muscle, we demonstrate that this technique makes possible the reliable quantification of extravasated leukocytes as well as the characterization of morphological phenomena of leukocyte transendothelial and interstitial migration
An Enhanced Features Extractor for a Portfolio of Constraint Solvers
Recent research has shown that a single arbitrarily efficient solver can be
significantly outperformed by a portfolio of possibly slower on-average
solvers. The solver selection is usually done by means of (un)supervised
learning techniques which exploit features extracted from the problem
specification. In this paper we present an useful and flexible framework that
is able to extract an extensive set of features from a Constraint
(Satisfaction/Optimization) Problem defined in possibly different modeling
languages: MiniZinc, FlatZinc or XCSP. We also report some empirical results
showing that the performances that can be obtained using these features are
effective and competitive with state of the art CSP portfolio techniques
Keep Rollin' - Whole-Body Motion Control and Planning for Wheeled Quadrupedal Robots
We show dynamic locomotion strategies for wheeled quadrupedal robots, which
combine the advantages of both walking and driving. The developed optimization
framework tightly integrates the additional degrees of freedom introduced by
the wheels. Our approach relies on a zero-moment point based motion
optimization which continuously updates reference trajectories. The reference
motions are tracked by a hierarchical whole-body controller which computes
optimal generalized accelerations and contact forces by solving a sequence of
prioritized tasks including the nonholonomic rolling constraints. Our approach
has been tested on ANYmal, a quadrupedal robot that is fully torque-controlled
including the non-steerable wheels attached to its legs. We conducted
experiments on flat and inclined terrains as well as over steps, whereby we
show that integrating the wheels into the motion control and planning framework
results in intuitive motion trajectories, which enable more robust and dynamic
locomotion compared to other wheeled-legged robots. Moreover, with a speed of 4
m/s and a reduction of the cost of transport by 83 % we prove the superiority
of wheeled-legged robots compared to their legged counterparts.Comment: IEEE Robotics and Automation Letter
Time variation of Kepler transits induced by stellar spots - a way to distinguish between prograde and retrograde motion. II. Application to KOIs
Mazeh, Holczer, and Shporer (2015) have presented an approach that can, in
principle, use the derived transit timing variation (TTV) of some transiting
planets observed by the mission to distinguish between prograde and
retrograde motion of their orbits with respect to their parent stars' rotation.
The approach utilizes TTVs induced by spot-crossing events that occur when the
planet moves across a spot on the stellar surface, looking for a correlation
between the derived TTVs and the stellar brightness derivatives at the
corresponding transits. This can work even in data that cannot temporally
resolve the spot-crossing events themselves. Here we apply this approach to the
KOIs, identifying nine systems where the photometric spot modulation
is large enough and the transit timing accurate enough to allow detection of a
TTV-brightness-derivatives correlation. Of those systems five show highly
significant prograde motion (Kepler-17b, Kepler-71b, KOI-883.01, KOI-895.01,
and KOI-1074.01), while no system displays retrograde motion, consistent with
the suggestion that planets orbiting cool stars have prograde motion. All five
systems have impact parameter , and all systems
within that impact parameter range show significant correlation, except
HAT-P-11b where the lack of a correlation follows its large stellar obliquity.
Our search suffers from an observational bias against detection of high impact
parameter cases, and the detected sample is extremely small. Nevertheless, our
findings may suggest that stellar spots, or at least the larger ones, tend to
be located at a low stellar latitude, but not along the stellar equator,
similar to the Sun.Comment: V2: accepted to Ap
A Parameter Study of Classical Be Star Disk Models Constrained by Optical Interferometry
We have computed theoretical models of circumstellar disks for the classical
Be stars Dra, Psc, and Cyg. Models were constructed
using a non-LTE radiative transfer code developed by \citet{sig07} which
incorporates a number of improvements over previous treatments of the disk
thermal structure, including a realistic chemical composition. Our models are
constrained by direct comparison with long baseline optical interferometric
observations of the H emitting regions and by contemporaneous H
line profiles. Detailed comparisons of our predictions with H
interferometry and spectroscopy place very tight constraints on the density
distributions for these circumstellar disks.Comment: 10 figures,28 pages, accepted by Ap
On Martin-Löf convergence of Solomonoff’s mixture
We study the convergence of Solomonoff’s universal mixture on individual Martin-Löf random sequences. A new result is presented extending the work of Hutter and Muchnik (2004) by showing that there does not exist a universal mixture that converges on all Martin-Löf random sequences
- …
