499 research outputs found

    Partially Solvable Anisotropic t-J Model with Long-Range Interactions

    Full text link
    A new anisotropic t-J model in one dimension is proposed which has long-range hopping and exchange. This t-J model is only partially solvable in contrast to known integrable models with long-range interaction. In the high-density limit the model reduces to the XXZ chain with the long-range exchange. Some exact eigenfunctions are shown to be of Jastrow-type if certain conditions for an anisotropy parameter are satisfied. The ground state as well as the excitation spectrum for various cases of the anisotropy parameter and filling are derived numerically. It is found that the Jastrow-type wave function is an excellent trial function for any value of the anisotropy parameter.Comment: 10 pages, 3 Postscript figure

    Magnetic Excitations in the Quasi-1D Ising-like Antiferromagnet TlCoCl3_3

    Full text link
    Neutron inelastic scattering measurements have been performed in order to investigate the magnetic excitations in the quasi-1D Ising-like antiferromagnet TlCoCl3_3. We observed the magnetic excitation, which corresponds to the spin-wave excitation continuum corresponding to the domain-wall pair excitation in the 1D Ising-like antiferromagnet. According to the Ishimura-Shiba theory, we analyzed the observed spin-wave excitation, and the exchange constant 2J2J and the anistropy ϵ\epsilon were estimated as 14.7 meV and 0.14 in TlCoCl3_3, respectively.Comment: 2 pages, 3 figures, jpsj2.cls, to be published in J. Phys. Soc. Jpn. Vol.75 (2006) No.

    Polarized Neutron Inelastic Scattering Study of the Anisotropic Magnetic Fluctuations in the Quasi-1D Ising-like Antiferromagnet TlCoCl3_3

    Full text link
    Polarized neutron inelastic scattering experiments have been carried out in the quasi-1D Ising-like antiferromagnet TlCoCl3_3. We observed the longitudinal magnetic fluctuation Szz(Q,ω)S_{zz} (Q, \omega) for the spin-wave excitation continuum, which has not been observed in the unpolarized neutron inelastic scattering experiments of the quasi-1D Ising-like antiferromagnets CsCoCl3_3 and TlCoCl3_3 so far, together with the transverse magnetic fluctuation Sxx(Q,ω)S_{xx} (Q, \omega). We compared both obtained intensities of Sxx(Q,ω)S_{xx} (Q, \omega) and Szz(Q,ω)S_{zz} (Q, \omega) with the perturbation theory from the pure Ising limit by Ishimura and Shiba, and a semi-quantitative agreement was found.Comment: 5 pages, 5 figures, jpsj2.cls, to be published in J. Phys. Soc. Jpn. Vol. 75 (2006) No.

    Dynamical Structure Factors of the S=1/2 Bond-Alternating Spin Chain with a Next-Nearest-Neighbor Interaction in Magnetic Fields

    Full text link
    The dynamical structure factor of the S=1/2 bond-alternating spin chain with a next-nearest-neighbor interaction in magnetic field is investigated using the continued fraction method based on the Lanczos algorithm. When the plateau exists on the magnetization curve, the longitudinal dynamical structure factor shows a large intensity with a periodic dispersion relation, while the transverse one shows a large intensity with an almost dispersionless mode. The periodicity and the amplitude of the dispersion relation in the longitudinal dynamical structure factor are sensitive to the coupling constants. The dynamical structure factor of the S=1/2 two-leg ladder in magnetic field is also calculated in the strong interchain-coupling regime. The dynamical structure factor shows gapless or gapful behavior depending on the wave vector along the rung.Comment: 8 pages, 4 figures, to appear in Journal of the Physical Society of Japan, vol. 69, no. 10, (2000

    The IntraCluster Medium: An Invariant Stellar IMF

    Get PDF
    Evidence supporting the hypothesis of an invariant stellar Initial Mass Function is strong and varied. The intra-cluster medium in rich clusters of galaxies is one of the few contrary locations where recent interpretations of the chemical abundances have favoured an IMF that is biased towards massive stars, compared to the `normal' IMF. This interpretation hinges upon the neglect of Type Ia supernovae to the ICM enrichment, and a particular choice of the nucleosynthesis yields of Type II supernovae. We demonstrate here that when one adopts yields determined empirically from observations of Galactic stars, rather than the uncertain model yields, a self-consistent picture may be obtained with an invariant stellar IMF, and about half of the iron in the ICM being produced by Type Ia supernovae.Comment: 9 pages, LateX (aaspp4 macro), including one postscript figure. Accepted, ApJ Letter

    Spin Wave Response in the Dilute Quasi-one Dimensional Ising-like Antiferromagnet CsCo_{0.83}Mg_{0.17}Br_3

    Full text link
    Inelastic neutron scattering profiles of spin waves in the dilute quasi-one-dimensional Ising-like antiferromagnet CsCo_{0.83}Mg_{0.17}Br_3 have been investigated. Calculations of S^{xx}(Q,omega), based on an effective spin Hamiltonian, accurately describe the experimental spin wave spectrum of the 2J mode. The Q dependence of the energy of this spin wave mode follows the analytical prediction omega_{xx}(Q)=(2J)(1-5epsilon^{2}cos^{2}Qa+2epsilon^{2})^{1/2}, calculated by Ishimura and Shiba using perturbation theory.Comment: 13 pages, 4 figure

    Thermodynamic Properties and Elementary Excitations in Quantum Sine-Gordon Spin System KCuGaF6

    Full text link
    Thermodynamic properties and elementary excitations in S=1/2S=1/2 one-dimensional Heisenberg antiferromagnet KCuGaF6_6 were investigated by magnetic susceptibility, specific heat and ESR measurements. Due to the Dzyaloshinsky-Moriya interaction with alternating DD-vectors and/or the staggered gg-tensor, the staggered magnetic field is induced when subjected to external magnetic field. Specific heat in magnetic field clearly shows the formation of excitation gap, which is attributed to the staggered magnetic field. The specific heat data was analyzed on the basis of the quantum sine-Gordon (SG) model. We observed many ESR modes including one soliton and three breather excitations characteristic of the quantum SG model.Comment: 4 pages, 5 figures, to appear in J. Phys. Soc. Jpn., vol. 76, no.

    Ground states of a one-dimensional lattice-gas model with an infinite range nonconvex interaction. A numerical study

    Full text link
    We consider a lattice-gas model with an infinite range pairwise noncovex interaction. It might be relevant, for example, for adsorption of alkaline elements on W(112) and Mo(112). We study a competition between the effective dipole-dipole and indirect interactions. The resulting ground state phase diagrams are analysed (numerically) in detail. We have found that for some model parameters the phase diagrams contain a region dominated by several phases only with periods up to nine lattice constants. The remaining phase diagrams reveal a complex structure of usually long periodic phases. We also discuss a possible role of surace states in phase transitions.Comment: 16 pages, 5 Postscript figures; Physical Review B15 (15 August 1996), in pres

    Dynamical Structure Factors of the Spin-1/2 XXZ Chain with Inverse-Square Exchange and Ising Anisotropy

    Full text link
    The dynamical properties of the S=1/2 antiferromagnetic XXZ chain are studied by the exact diagonalization and the recursion method of finite systems up to 24 sites. Two types of the exchange interaction are considered: one is the nearest-neighbor type, and the other is the inverse-square one. As the Ising anisotropy becomes larger, there appears a noticeable difference in the transverse component S^{xx}(q,\omega) between the two types of the exchange. For the nearest-neighbor type, the peak frequency of S^{xx}(q,\omega) for each q approaches the center of the continuum spectrum. On the contrary, the peak frequency for the inverse-square type moves to the upper edge of the continuum, and separates from the continuum for the anisotropy larger than the threshold value. Whether the interaction between domain walls (solitons) is absent or repulsive in the Ising limit leads to this difference in the behavior of S^{xx}(q,\omega). In the longitudinal component S^{zz}(q,\omega), on the other hand, the feature of the dynamics is scarcely different between the two types. The energy gap and the static properties are also discussed.Comment: 10 pages. A hard copy of 16 figures is available on request. Submitted to J. Phys. Soc. Jp

    The GRB 071112C: A Case Study of Different Mechanisms in X-ray and Optical Temporal Evolution

    Get PDF
    We present the study on GRB 071112C X-ray and optical light curves. In these two wavelength ranges, we have found different temporal properties. The R-band light curve showed an initial rise followed by a single power-law decay, while the X-ray light curve was described by a single power-law decay plus a flare-like feature. Our analysis shows that the observed temporal evolution cannot be described by the external shock model in which the X-ray and optical emission are produced by the same emission mechanism. No significant color changes in multi-band light curves and a reasonable value of the initial Lorentz factor ({\Gamma}0 = 275 \pm 20) in a uniform ISM support the afterglow onset scenario as the correct interpretation for the early R-band rise. The result suggests the optical flux is dominated by afterglow. Our further investigations show that the X-ray flux could be created by an additional feature related to energy injection and X-ray afterglow. Different theoretical interpretations indicate the additional feature in X-ray can be explained by either late internal dissipation or local inverse-Compton scattering in the external shock.Comment: 20 pages, 3 figures, accepted for publication in Ap
    corecore