499 research outputs found
Partially Solvable Anisotropic t-J Model with Long-Range Interactions
A new anisotropic t-J model in one dimension is proposed which has long-range
hopping and exchange. This t-J model is only partially solvable in contrast to
known integrable models with long-range interaction. In the high-density limit
the model reduces to the XXZ chain with the long-range exchange. Some exact
eigenfunctions are shown to be of Jastrow-type if certain conditions for an
anisotropy parameter are satisfied. The ground state as well as the excitation
spectrum for various cases of the anisotropy parameter and filling are derived
numerically. It is found that the Jastrow-type wave function is an excellent
trial function for any value of the anisotropy parameter.Comment: 10 pages, 3 Postscript figure
Magnetic Excitations in the Quasi-1D Ising-like Antiferromagnet TlCoCl
Neutron inelastic scattering measurements have been performed in order to
investigate the magnetic excitations in the quasi-1D Ising-like antiferromagnet
TlCoCl. We observed the magnetic excitation, which corresponds to the
spin-wave excitation continuum corresponding to the domain-wall pair excitation
in the 1D Ising-like antiferromagnet. According to the Ishimura-Shiba theory,
we analyzed the observed spin-wave excitation, and the exchange constant
and the anistropy were estimated as 14.7 meV and 0.14 in TlCoCl,
respectively.Comment: 2 pages, 3 figures, jpsj2.cls, to be published in J. Phys. Soc. Jpn.
Vol.75 (2006) No.
Polarized Neutron Inelastic Scattering Study of the Anisotropic Magnetic Fluctuations in the Quasi-1D Ising-like Antiferromagnet TlCoCl
Polarized neutron inelastic scattering experiments have been carried out in
the quasi-1D Ising-like antiferromagnet TlCoCl. We observed the
longitudinal magnetic fluctuation for the spin-wave
excitation continuum, which has not been observed in the unpolarized neutron
inelastic scattering experiments of the quasi-1D Ising-like antiferromagnets
CsCoCl and TlCoCl so far, together with the transverse magnetic
fluctuation . We compared both obtained intensities of
and with the perturbation theory from
the pure Ising limit by Ishimura and Shiba, and a semi-quantitative agreement
was found.Comment: 5 pages, 5 figures, jpsj2.cls, to be published in J. Phys. Soc. Jpn.
Vol. 75 (2006) No.
Dynamical Structure Factors of the S=1/2 Bond-Alternating Spin Chain with a Next-Nearest-Neighbor Interaction in Magnetic Fields
The dynamical structure factor of the S=1/2 bond-alternating spin chain with
a next-nearest-neighbor interaction in magnetic field is investigated using the
continued fraction method based on the Lanczos algorithm. When the plateau
exists on the magnetization curve, the longitudinal dynamical structure factor
shows a large intensity with a periodic dispersion relation, while the
transverse one shows a large intensity with an almost dispersionless mode. The
periodicity and the amplitude of the dispersion relation in the longitudinal
dynamical structure factor are sensitive to the coupling constants. The
dynamical structure factor of the S=1/2 two-leg ladder in magnetic field is
also calculated in the strong interchain-coupling regime.
The dynamical structure factor shows gapless or gapful behavior depending on
the wave vector along the rung.Comment: 8 pages, 4 figures, to appear in Journal of the Physical Society of
Japan, vol. 69, no. 10, (2000
The IntraCluster Medium: An Invariant Stellar IMF
Evidence supporting the hypothesis of an invariant stellar Initial Mass
Function is strong and varied. The intra-cluster medium in rich clusters of
galaxies is one of the few contrary locations where recent interpretations of
the chemical abundances have favoured an IMF that is biased towards massive
stars, compared to the `normal' IMF. This interpretation hinges upon the
neglect of Type Ia supernovae to the ICM enrichment, and a particular choice of
the nucleosynthesis yields of Type II supernovae. We demonstrate here that when
one adopts yields determined empirically from observations of Galactic stars,
rather than the uncertain model yields, a self-consistent picture may be
obtained with an invariant stellar IMF, and about half of the iron in the ICM
being produced by Type Ia supernovae.Comment: 9 pages, LateX (aaspp4 macro), including one postscript figure.
Accepted, ApJ Letter
Spin Wave Response in the Dilute Quasi-one Dimensional Ising-like Antiferromagnet CsCo_{0.83}Mg_{0.17}Br_3
Inelastic neutron scattering profiles of spin waves in the dilute
quasi-one-dimensional Ising-like antiferromagnet CsCo_{0.83}Mg_{0.17}Br_3 have
been investigated. Calculations of S^{xx}(Q,omega), based on an effective spin
Hamiltonian, accurately describe the experimental spin wave spectrum of the 2J
mode. The Q dependence of the energy of this spin wave mode follows the
analytical prediction
omega_{xx}(Q)=(2J)(1-5epsilon^{2}cos^{2}Qa+2epsilon^{2})^{1/2}, calculated by
Ishimura and Shiba using perturbation theory.Comment: 13 pages, 4 figure
Thermodynamic Properties and Elementary Excitations in Quantum Sine-Gordon Spin System KCuGaF6
Thermodynamic properties and elementary excitations in
one-dimensional Heisenberg antiferromagnet KCuGaF were investigated by
magnetic susceptibility, specific heat and ESR measurements. Due to the
Dzyaloshinsky-Moriya interaction with alternating -vectors and/or the
staggered -tensor, the staggered magnetic field is induced when subjected to
external magnetic field. Specific heat in magnetic field clearly shows the
formation of excitation gap, which is attributed to the staggered magnetic
field. The specific heat data was analyzed on the basis of the quantum
sine-Gordon (SG) model. We observed many ESR modes including one soliton and
three breather excitations characteristic of the quantum SG model.Comment: 4 pages, 5 figures, to appear in J. Phys. Soc. Jpn., vol. 76, no.
Ground states of a one-dimensional lattice-gas model with an infinite range nonconvex interaction. A numerical study
We consider a lattice-gas model with an infinite range pairwise noncovex
interaction. It might be relevant, for example, for adsorption of alkaline
elements on W(112) and Mo(112). We study a competition between the effective
dipole-dipole and indirect interactions. The resulting ground state phase
diagrams are analysed (numerically) in detail. We have found that for some
model parameters the phase diagrams contain a region dominated by several
phases only with periods up to nine lattice constants. The remaining phase
diagrams reveal a complex structure of usually long periodic phases. We also
discuss a possible role of surace states in phase transitions.Comment: 16 pages, 5 Postscript figures; Physical Review B15 (15 August 1996),
in pres
Dynamical Structure Factors of the Spin-1/2 XXZ Chain with Inverse-Square Exchange and Ising Anisotropy
The dynamical properties of the S=1/2 antiferromagnetic XXZ chain are studied
by the exact diagonalization and the recursion method of finite systems up to
24 sites. Two types of the exchange interaction are considered: one is the
nearest-neighbor type, and the other is the inverse-square one. As the Ising
anisotropy becomes larger, there appears a noticeable difference in the
transverse component S^{xx}(q,\omega) between the two types of the exchange.
For the nearest-neighbor type, the peak frequency of S^{xx}(q,\omega) for each
q approaches the center of the continuum spectrum. On the contrary, the peak
frequency for the inverse-square type moves to the upper edge of the continuum,
and separates from the continuum for the anisotropy larger than the threshold
value. Whether the interaction between domain walls (solitons) is absent or
repulsive in the Ising limit leads to this difference in the behavior of
S^{xx}(q,\omega). In the longitudinal component S^{zz}(q,\omega), on the other
hand, the feature of the dynamics is scarcely different between the two types.
The energy gap and the static properties are also discussed.Comment: 10 pages. A hard copy of 16 figures is available on request.
Submitted to J. Phys. Soc. Jp
The GRB 071112C: A Case Study of Different Mechanisms in X-ray and Optical Temporal Evolution
We present the study on GRB 071112C X-ray and optical light curves. In these
two wavelength ranges, we have found different temporal properties. The R-band
light curve showed an initial rise followed by a single power-law decay, while
the X-ray light curve was described by a single power-law decay plus a
flare-like feature. Our analysis shows that the observed temporal evolution
cannot be described by the external shock model in which the X-ray and optical
emission are produced by the same emission mechanism. No significant color
changes in multi-band light curves and a reasonable value of the initial
Lorentz factor ({\Gamma}0 = 275 \pm 20) in a uniform ISM support the afterglow
onset scenario as the correct interpretation for the early R-band rise. The
result suggests the optical flux is dominated by afterglow. Our further
investigations show that the X-ray flux could be created by an additional
feature related to energy injection and X-ray afterglow. Different theoretical
interpretations indicate the additional feature in X-ray can be explained by
either late internal dissipation or local inverse-Compton scattering in the
external shock.Comment: 20 pages, 3 figures, accepted for publication in Ap
- …
