318 research outputs found
Direct Injection Liquid Chromatography High-Resolution Mass Spectrometry for Determination of Primary and Secondary Terrestrial and Marine Biomarkers in Ice Cores
Many atmospheric organic compounds are long-lived enough to be transported from their sources to polar regions and high mountain environments where they can be trapped in ice archives. While inorganic components in ice archives have been studied extensively to identify past climate changes, organic compounds have rarely been used to assess paleo-environmental changes, mainly due to the lack of suitable analytical methods. This study presents a new method of direct injection HPLC-MS analysis, without the need of pre-concentrating the melted ice, for the determination of a series of novel biomarkers in ice-core samples indicative of primary and secondary terrestrial and marine organic aerosol sources. Eliminating a preconcentration step reduces contamination potential and decreases the required sample volume thus allowing a higher time resolution in the archives. The method is characterised by limits of detections (LODs) in the range of 0.01-15 ppb, depending on the analyte, and accuracy evaluated through an interlaboratory comparison. We find that many components in secondary organic aerosols (SOA) are clearly detectable at concentrations comparable to those previously observed in replicate preconcentrated ice samples from the Belukha glacier, Russian Altai Mountains. Some compounds with low recoveries in preconcentration steps are now detectable in samples with this new direct injection method significantly increasing the range of environmental processes and sources that become accessible for paleo-climate studies
Comprehensive modelling study of ozonolysis of oleic acid aerosol based on real-time, online measurements of aerosol composition
The chemical composition of organic aerosols profoundly influences their atmospheric properties, but a detailed understanding of heterogeneous and in-particle reactivity is lacking. We present here a combined experimental and modeling study of the ozonolysis of oleic acid particles. An online mass spectrometry (MS) method, Extractive Electrospray Ionization (EESI), is used to follow the composition of the aerosol at a molecular level in real time; relative changes in the concentrations of both reactants and products are determined during aerosol aging. The results show evidence for multiple non-first-order reactions involving stabilized Criegee intermediates, including the formation of secondary ozonides and other oligomers. Offline liquid chromatography MS is used to confirm the online MS assignment of the monomeric and dimeric products. We explain the observed EESI-MS chemical composition changes, and chemical and physical data from previous studies, using a process-based aerosol chemistry simulation, the Pretty Good Aerosol Model (PG-AM). In particular, we extend previous studies of reactant loss by demonstrating success in reproducing the time dependence of product formation and the evolving particle size. This advance requires a comprehensive chemical scheme coupled to the partitioning of semivolatile products; relevant reaction and evaporation parameters have been refined using our new measurements in combination with PG-AM.This work was supported by the UK Natural Environment Research Council (NERC grant NE/I528277/1) and the European Research Council (ERC starting grant 279405 and the Atmospheric Chemistry Climate Interactions (ACCI) project, grant 267760). PTG thanks NCAS Climate for support
Importance of relative humidity in the oxidative ageing of organic aerosols: case study of the ozonolysis of maleic acid aerosol
Many important atmospheric aerosol processes depend on the chemical composition of the aerosol, e.g. water uptake and particle cloud interactions. Atmospheric ageing processes, such as oxidation reactions, significantly and continuously change the chemical composition of aerosol particles throughout their lifetime. These ageing processes are often poorly understood. In this study we utilize an aerosol flow tube set up and an ultra-high resolution mass spectrometer to explore the effect of relative humidity (RH) in the range of <5–90% on the ozonolysis of maleic acid aerosol which is employed as model organic aerosol system. Due to the slow reaction kinetics relatively high ozone concentrations of 160–200 ppm were used to achieve an appreciable degree of oxidation of maleic acid. The effect of oxidative ageing on the hygroscopicity of maleic acid particles is also investigated using an electrodynamic balance and thermodynamic modelling. RH has a profound effect on the oxidation of maleic acid particles. Very little oxidation is observed at RH < 50% and the only observed reaction products are glyoxylic acid and formic acid. In comparison, when RH > 50% there are about 15 oxidation products identified. This increased oxidation was observed even when the particles were exposed to high humidities long after a low RH ozonolysis reaction. This result might have negative implications for the use of water as an extraction solvent for the analysis of oxidized organic aerosols. These humidity-dependent differences in the composition of the ozonolyzed aerosol demonstrate that water is both a key reactant in the oxidation scheme and a determinant of particle phase and hence diffusivity. The measured chemical composition of the processed aerosol is used to model the hygroscopic growth, which compares favourably with water uptake results from the electrodynamic balance measurements. A reaction mechanism is presented which takes into account the RH dependent observations. This study emphasises the importance of studying the combined effects of several atmospheric parameters such as oxidants and RH to accurately describe the complex oxidation scheme of organic aerosols
Rapid interrogation of the physical and chemical characteristics of salbutamol sulphate aerosol from a pressurised metered-dose inhaler (pMDI)
Individual micron-sized solid particles from a Salamols pharmaceutical inhaler are stably captured in air using an optical trap for the first time. Raman spectroscopy of the levitated particles allows online interrogation of composition and deliquescent phase change within a high humidity environment that mimics the particle’s travel from inhaler to lun
Constructing living buildings: a review of relevant technologies for a novel application of biohybrid robotics
Biohybrid robotics takes an engineering approach to the expansion and exploitation of biological behaviours for application to automated tasks. Here, we identify the construction of living buildings and infrastructure as a high-potential application domain for biohybrid robotics, and review technological advances relevant to its future development. Construction, civil infrastructure maintenance and building occupancy in the last decades have comprised a major portion of economic production, energy consumption and carbon emissions. Integrating biological organisms into automated construction tasks and permanent building components therefore has high potential for impact. Live materials can provide several advantages over standard synthetic construction materials, including self-repair of damage, increase rather than degradation of structural performance over time, resilience to corrosive environments, support of biodiversity, and mitigation of urban heat islands. Here, we review relevant technologies, which are currently disparate. They span robotics, self-organizing systems, artificial life, construction automation, structural engineering, architecture, bioengineering, biomaterials, and molecular and cellular biology. In these disciplines, developments relevant to biohybrid construction and living buildings are in the early stages, and typically are not exchanged between disciplines. We, therefore, consider this review useful to the future development of biohybrid engineering for this highly interdisciplinary application.publishe
From the discrete to the continuous - towards a cylindrically consistent dynamics
Discrete models usually represent approximations to continuum physics.
Cylindrical consistency provides a framework in which discretizations mirror
exactly the continuum limit. Being a standard tool for the kinematics of loop
quantum gravity we propose a coarse graining procedure that aims at
constructing a cylindrically consistent dynamics in the form of transition
amplitudes and Hamilton's principal functions. The coarse graining procedure,
which is motivated by tensor network renormalization methods, provides a
systematic approximation scheme towards this end. A crucial role in this coarse
graining scheme is played by embedding maps that allow the interpretation of
discrete boundary data as continuum configurations. These embedding maps should
be selected according to the dynamics of the system, as a choice of embedding
maps will determine a truncation of the renormalization flow.Comment: 22 page
Cloud condensation nuclei activity, droplet growth kinetics, and hygroscopicity of biogenic and anthropogenic secondary organic aerosol (SOA)
© 2016 Author(s).Interaction of biogenic volatile organic compounds (VOCs) with Anthropogenic VOC (AVOC) affects the physicochemical properties of secondary organic aerosol (SOA). We investigated cloud droplet activation (CCN activity), droplet growth kinetics, and hygroscopicity of mixed anthropogenic and biogenic SOA (ABSOA) compared to pure biogenic SOA (BSOA) and pure anthropogenic SOA (ASOA). Selected monoterpenes and aromatics were used as representative precursors of BSOA and ASOA, respectively. We found that BSOA, ASOA, and ABSOA had similar CCN activity despite the higher oxygen to carbon ratio (O/C) of ASOA compared to BSOA and ABSOA. For individual reaction systems, CCN activity increased with the degree of oxidation. Yet, when considering all different types of SOA together, the hygroscopicity parameter, κ, did not correlate with O/C. Droplet growth kinetics of BSOA, ASOA, and ABSOA were comparable to that of (NH)SO, which indicates that there was no delay in the water uptake for these SOA in supersaturated conditions. In contrast to CCN activity, the hygroscopicity parameter from a hygroscopic tandem differential mobility analyzer (HTDMA) measurement, κ, of ASOA was distinctively higher (0.09-0.10) than that of BSOA (0.03-0.06), which was attributed to the higher degree of oxidation of ASOA. The ASOA components in mixed ABSOA enhanced aerosol hygroscopicity. Changing the ASOA fraction by adding biogenic VOC (BVOC) to ASOA or vice versa (AVOC to BSOA) changed the hygroscopicity of aerosol, in line with the change in the degree of oxidation of aerosol. However, the hygroscopicity of ABSOA cannot be described by a simple linear combination of pure BSOA and ASOA systems. This indicates that additional processes, possibly oligomerization, affected the hygroscopicity. Closure analysis of CCN and HTDMA data showed κ was lower than κ by 30-70 %. Better closure was achieved for ASOA compared to BSOA. This discrepancy can be attributed to several reasons. ASOA seemed to have higher solubility in subsaturated conditions and/or higher surface tension at the activation point than that of BSOA.EUROCHAMP2 European Commission 7th framework, NordForsk, VILLUM Foundatio
Asymmetric effects of false positive and false negative indications on the verification of alerts in different risk conditions
Dieser Beitrag ist mit Zustimmung des Rechteinhabers aufgrund einer (DFG geförderten) Allianz- bzw. Nationallizenz frei zugänglich.This publication is with permission of the rights owner freely accessible due to an Alliance licence and a national licence (funded by the DFG, German Research Foundation) respectively.Indications from alerts or alarm systems can be the trigger for decisions, or they can elicit further information search. We report an experiment on the tendency to collect additional information after receiving system indications. We varied the proclivity of the alarm system towards false positive or false negative indications and the perceived risk of the situation. Results showed that false alarm-prone systems led to more frequent re-checking following both alarms and non-alarms in the high risk condition, whereas miss-prone systems led to high re-checking rates only for non-alarms, representing an asymmetry effect. Increasing the risk led to more re-checks with all alarm systems, but it had a stronger impact in the false alarm-prone condition. Results regarding the relation of risk and the asymmetry effect of false negative and false positive indications are discussed
Enhanced Volatile Organic Compounds emissions and organic aerosol mass increase the oligomer content of atmospheric aerosols
Secondary organic aerosol (SOA) accounts for a dominant fraction of the submicron atmospheric particle mass, but knowledge of the formation, composition and climate effects of SOA is incomplete and limits our understanding of overall aerosol effects in the atmosphere. Organic oligomers were discovered as dominant components in SOA over a decade ago in laboratory experiments and have since been proposed to play a dominant role in many aerosol processes. However, it remains unclear whether oligomers are relevant under ambient atmospheric conditions because they are often not clearly observed in field samples. Here we resolve this long-standing discrepancy by showing that elevated SOA mass is one of the key drivers of oligomer formation in the ambient atmosphere and laboratory experiments. We show for the first time that a specific organic compound class in aerosols, oligomers, is strongly correlated with cloud condensation nuclei (CCN) activities of SOA particles. These findings might have important implications for future climate scenarios where increased temperatures cause higher biogenic volatile organic compound (VOC) emissions, which in turn lead to higher SOA mass formation and significant changes in SOA composition. Such processes would need to be considered in climate models for a realistic representation of future aerosol-climate-biosphere feedbacks.Research at the University of Cambridge was supported by a Marie Curie Intra-European fellowship (project no. 254319) and the ERC grant no. 279405. We thank the SAPHIR and TNA2012 team in Jülich for supporting our measurements and the support by EUROCHAMP2 contract no. 228335. The field-work was funded by ERC grant 227463 and the Academy of Finland Centre of Excellence (grants 1118615 and 272041) and by the Office of Science (BER), US Department of Energy via Biogenic Aerosols - Effects on Clouds and Climate (BAECC). European Union’s Horizon 2020 research and innovation programme under grant agreement no. 654109 and previously from the European Union Seventh Framework Programme (FP7/2007-2013) under grant agreement no. 262254. We thank the Met Office for use of the NAME model. S.C. thanks the UK Natural Environment Research Council for her studentship
Introduction to Special Issue - In-depth study of air pollution sources and processes within Beijing and its surrounding region (APHH-2 Beijing)
Abstract. The Atmospheric Pollution and Human Health in a Chinese Megacity (APHH-Beijing) programme is an international collaborative project focusing on understanding the sources, processes and health effects of air pollution in the Beijing megacity. APHH-Beijing brings together leading China and UK research groups, state-of-the-art infrastructure and air quality models to work on four research themes: (1) sources and emissions of air pollutants; (2) atmospheric processes affecting urban air pollution; (3) air pollution exposure and health impacts; and (4) interventions and solutions. Themes 1 and 2 are closely integrated and support Theme 3, while Themes 1-3 provide scientific data for Theme 4 to develop cost-effective air pollution mitigation solutions. This paper provides an introduction to (i) the rationale of the APHH-Beijing programme, and (ii) the measurement and modelling activities performed as part of it. In addition, this paper introduces the meteorology and air quality conditions during two joint intensive field campaigns - a core integration activity in APHH-Beijing. The coordinated campaigns provided observations of the atmospheric chemistry and physics at two sites: (i) the Institute of Atmospheric Physics in central Beijing, and (ii) Pinggu in rural Beijing during 10 November – 10 December 2016 (winter) and 21 May- 22 June 2017 (summer). The campaigns were complemented by numerical modelling and automatic air quality and low-cost sensor observations in the Beijing megacity. In summary, the paper provides background information on the APHH-Beijing programme, and sets the scene for more focussed papers addressing specific aspects, processes and effects of air pollution in Beijing
- …
