125 research outputs found
Order in glassy systems
A directly measurable correlation length may be defined for systems having a
two-step relaxation, based on the geometric properties of density profile that
remains after averaging out the fast motion. We argue that the length diverges
if and when the slow timescale diverges, whatever the microscopic mechanism at
the origin of the slowing down. Measuring the length amounts to determining
explicitly the complexity from the observed particle configurations. One may
compute in the same way the Renyi complexities K_q, their relative behavior for
different q characterizes the mechanism underlying the transition. In
particular, the 'Random First Order' scenario predicts that in the glass phase
K_q=0 for q>x, and K_q>0 for q<x, with x the Parisi parameter. The hypothesis
of a nonequilibrium effective temperature may also be directly tested directly
from configurations.Comment: Typos corrected, clarifications adde
Alternative approach to in the uMSSM
The gluino contributions to the Wilson coefficients for are calculated within the unconstrained MSSM. New stringent bounds on
the and mass insertion parameters are
obtained in the limit in which the SM and SUSY contributions to
approximately cancel. Such a cancellation can plausibly appear within several
classes of SUSY breaking models in which the trilinear couplings exhibit a
factorized structure proportional to the Yukawa matrices. Assuming this
cancellation takes place, we perform an analysis of the decay. We
show that in a supersymmetric world such an alternative is reasonable and it is
possible to saturate the branching ratio and produce a CP
asymmetry of up to 20%, from only the gluino contribution to
coefficients. Using photon polarization a LR asymmetry can be defined that in
principle allows for the and contributions to the decay to be disentangled. In this scenario no constraints on the ``sign
of '' can be derived.Comment: LaTeX2e, 23 pages, 7 ps figure, needs package epsfi
Economic Analysis and Evaluation of 'Fair Prices' - Can Antitrust and International Taxation Learn from Each Other?
The annealing mechanism of AuGe/Ni/Au ohmic contacts to a two-dimensional electron gas in GaAs/AlGaAs heterostructures
Ohmic contacts to a two-dimensional electron gas (2DEG) in GaAs/AlGaAs
heterostructures are often realized by annealing of AuGe/Ni/Au that is
deposited on its surface. We studied how the quality of this type of ohmic
contact depends on the annealing time and temperature, and how optimal
parameters depend on the depth of the 2DEG below the surface. Combined with
transmission electron microscopy and energy-dispersive X-ray spectrometry
studies of the annealed contacts, our results allow for identifying the
annealing mechanism and proposing a model that can predict optimal annealing
parameters for a certain heterostructure.Comment: 9 pages, 4 figure
Dark Matter Signals from Cascade Annihilations
A leading interpretation of the electron/positron excesses seen by PAMELA and
ATIC is dark matter annihilation in the galactic halo. Depending on the
annihilation channel, the electron/positron signal could be accompanied by a
galactic gamma ray or neutrino flux, and the non-detection of such fluxes
constrains the couplings and halo properties of dark matter. In this paper, we
study the interplay of electron data with gamma ray and neutrino constraints in
the context of cascade annihilation models, where dark matter annihilates into
light degrees of freedom which in turn decay into leptons in one or more steps.
Electron and muon cascades give a reasonable fit to the PAMELA and ATIC data.
Compared to direct annihilation, cascade annihilations can soften gamma ray
constraints from final state radiation by an order of magnitude. However, if
dark matter annihilates primarily into muons, the neutrino constraints are
robust regardless of the number of cascade decay steps. We also examine the
electron data and gamma ray/neutrino constraints on the recently proposed
"axion portal" scenario.Comment: 36 pages, 11 figures, 7 tables; references adde
A Natural Supersymmetric Model with MeV Dark Matter
It has previously been proposed that annihilating dark matter particles with
MeV-scale masses could be responsible for the flux of 511 keV photons observed
from the region of the Galactic Bulge. The conventional wisdom, however, is
that it is very challenging to construct a viable particle physics model
containing MeV dark matter. In this letter, we challenge this conclusion by
describing a simple and natural supersymmetric model in which the lightest
supersymmetric particle naturally has a MeV-scale mass and the other
phenomenological properties required to generate the 511 keV emission. In
particular, the small ( ) effective couplings between dark
matter and the Standard Model fermions required in this scenario naturally lead
to radiative corrections that generate MeV-scale masses for both the dark
matter candidate and the mediator particle.Comment: 4 pages, 1 figure. v2: Small modification to discussion of spectru
New Approaches to Enforcement and Compliance with Labour Regulatory Standards: The Case of Ontario, Canada
No Weight for “Due Weight”? A Children’s Autonomy Principle in Best Interest Proceedings
Article 12 of the un Convention on the Rights of the Child (crc) stipulates that children should have their views accorded due weight in accordance with age and maturity, including in proceedings affecting them. Yet there is no accepted understanding as to how to weigh children’s views, and it is associated strongly with the indeterminate notion of “competence”. In this article, case law and empirical research is drawn upon to argue that the concept of weighing their views has been an obstacle to children’s rights, preventing influence on outcomes for children in proceedings in which their best interests are determined. Younger children and those whose wishes incline against the prevailing orthodoxy (they may resist contact with a parent, for example) particularly lose out. Children’s views appear only to be given “significant weight” if the judge agrees with them anyway. As it is the notion of autonomy which is prioritised in areas such as medical and disability law and parents’ rights, it is proposed in this article that a children’s autonomy principle is adopted in proceedings – in legal decisions in which the best interest of the child is the primary consideration, children should get to choose, if they wish, how they are involved and the outcome, unless it is likely that significant harm will arise from their wishes. They should also have “autonomy support” to assist them in proceedings. This would likely ensure greater influence for children and require more transparent decision-making by adults.</jats:p
- …
