650 research outputs found
Mass Determination in SUSY-like Events with Missing Energy
We describe a kinematic method which is capable of determining the overall
mass scale in SUSY-like events at a hadron collider with two missing (dark
matter) particles. We focus on the kinematic topology in which a pair of
identical particles is produced with each decaying to two leptons and an
invisible particle (schematically, followed by each
decaying via where is invisible). This topology
arises in many SUSY processes such as squark and gluino production and decay,
not to mention t\anti t di-lepton decays. In the example where the final
state leptons are all muons, our errors on the masses of the particles ,
and in the decay chain range from 4 GeV for 2000 events after cuts to 13
GeV for 400 events after cuts. Errors for mass differences are much smaller.
Our ability to determine masses comes from considering all the kinematic
information in the event, including the missing momentum, in conjunction with
the quadratic constraints that arise from the , and mass-shell
conditions. Realistic missing momentum and lepton momenta uncertainties are
included in the analysis.Comment: 41 pages, 14 figures, various clarifications and expanded discussion
included in revised version that conforms to the version to be publishe
Generalized stochastic Schroedinger equations for state vector collapse
A number of authors have proposed stochastic versions of the Schr\"odinger
equation, either as effective evolution equations for open quantum systems or
as alternative theories with an intrinsic collapse mechanism. We discuss here
two directions for generalization of these equations. First, we study a general
class of norm preserving stochastic evolution equations, and show that even
after making several specializations, there is an infinity of possible
stochastic Schr\"odinger equations for which state vector collapse is provable.
Second, we explore the problem of formulating a relativistic stochastic
Schr\"odinger equation, using a manifestly covariant equation for a quantum
field system based on the interaction picture of Tomonaga and Schwinger. The
stochastic noise term in this equation can couple to any local scalar density
that commutes with the interaction energy density, and leads to collapse onto
spatially localized eigenstates. However, as found in a similar model by
Pearle, the equation predicts an infinite rate of energy nonconservation
proportional to , arising from the local double commutator in
the drift term.Comment: 24 pages Plain TeX. Minor changes, some new references. To appear in
Journal of Physics
K-string tensions at finite temperature and integrable models
It has recently been pointed out that simple scaling properties of Polyakov
correlation functions of gauge systems in the confining phase suggest that the
ratios of k-string tensions in the low temperature region is constant up to
terms of order T^3. Here we argue that, at least in a three-dimensional Z_4
gauge model, the above ratios are constant in the whole confining phase. This
result is obtained by combining numerical experiments with known exact results
on the mass spectrum of an integrable two-dimensional spin model describing the
infrared behaviour of the gauge system near the deconfining transition.Comment: 22 pages, 7 figures, 1 tabl
Exploring the BWCA (Bino-Wino Co-Annihilation) Scenario for Neutralino Dark Matter
In supersymmetric models with non-universal gaugino masses, it is possible to
have opposite-sign SU(2) and U(1) gaugino mass terms. In these models, the
gaugino eigenstates experience little mixing so that the lightest SUSY particle
remains either pure bino or pure wino. The neutralino relic density can only be
brought into accord with the WMAP measured value when bino-wino co-annihilation
(BWCA) acts to enhance the dark matter annihilation rate. We map out parameter
space regions and mass spectra which are characteristic of the BWCA scenario.
Direct and indirect dark matter detection rates are shown to be typically very
low. At collider experiments, the BWCA scenario is typified by a small mass gap
m_{\tilde Z_2}-m_{\tilde Z_1} ~ 20-80 GeV, so that tree level two body decays
of \tilde Z_2 are not allowed. However, in this case the second lightest
neutralino has an enhanced loop decay branching fraction to photons. While the
photonic neutralino decay signature looks difficult to extract at the Fermilab
Tevatron, it should lead to distinctive events at the CERN LHC and at a linear
e^+e^- collider.Comment: 44 pages, 21 figure
Climate change and water resources in arid regions : uncertainty of the baseline time period
Recent climate change studies have given a lot of attention to the uncertainty that stems from general circulation models (GCM), greenhouse gas emission scenarios, hydrological models and downscaling approaches. Yet, the uncertainty that stems from the selection of the baseline period has not been studied. Accordingly, the main research question is as follows: What would be the differences and/or the similarities in the evaluation of climate change impacts between the GCM and the delta perturbation scenarios using different baseline periods? This article addresses this issue through comparison of the results of two different baseline periods, investigating the uncertainties in evaluating climate change impact on the hydrological characteristics of arid regions. The Lower Zab River Basin (Northern Iraq) has been selected as a representative case study. The research outcomes show that the considered baseline periods suggest increases and decreases in the temperature and precipitation (P), respectively, over the 2020, 2050 and 2080 periods. The two climatic scenarios are likely to lead to similar reductions in the reservoir mean monthly flows, and subsequently, their maximum discharge is approximately identical. The predicted reduction in the inflow for the 2080–2099 time period fluctuates between 31 and 49% based on SRA1B and SRA2 scenarios, respectively. The delta perturbation scenario permits the sensitivity of the climatic models to be clearly determined compared to the GCM. The former allows for a wide variety of likely climate change scenarios at the regional level and are easier to generate and apply so that they could complement the latter
KK Parity in Warped Extra Dimension
We construct models with a Kaluza-Klein (KK) parity in a five- dimensional
warped geometry, in an attempt to address the little hierarchy problem present
in setups with bulk Standard Model fields. The lightest KK particle (LKP) is
stable and can play the role of dark matter. We consider the possibilities of
gluing two identical slices of 5D AdS in either the UV (IR-UV-IR model) or the
IR region (UV-IR-UV model) and discuss the model-building issues as well as
phenomenological properties in both cases. In particular, we find that the
UV-IR-UV model is not gravitationally stable and that additional mechanisms
might be required in the IR-UV-IR model in order to address flavor issues.
Collider signals of the warped KK parity are different from either the
conventional warped extra dimension without KK parity, in which the new
particles are not necessarily pair-produced, or the KK parity in flat universal
extra dimensions, where each KK level is nearly degenerate in mass. Dark matter
and collider properties of a TeV mass KK Z gauge boson as the LKP are
discussed.Comment: 35 pages, 11 figure
Mixed Higgsino Dark Matter from a Reduced SU(3) Gaugino Mass: Consequences for Dark Matter and Collider Searches
In gravity-mediated SUSY breaking models with non-universal gaugino masses,
lowering the SU(3) gaugino mass |M_3| leads to a reduction in the squark and
gluino masses. Lower third generation squark masses, in turn, diminish the
effect of a large top quark Yukawa coupling in the running of the higgs mass
parameter m_{H_u}^2, leading to a reduction in the magnitude of the
superpotential mu parameter (relative to M_1 and M_2). A low | mu | parameter
gives rise to mixed higgsino dark matter (MHDM), which can efficiently
annihilate in the early universe to give a dark matter relic density in accord
with WMAP measurements. We explore the phenomenology of the low |M_3| scenario,
and find for the case of MHDM increased rates for direct and indirect detection
of neutralino dark matter relative to the mSUGRA model. The sparticle mass
spectrum is characterized by relatively light gluinos, frequently with
m(gl)<<m(sq). If scalar masses are large, then gluinos can be very light, with
gl->Z_i+g loop decays dominating the gluino branching fraction. Top squarks can
be much lighter than sbottom and first/second generation squarks. The presence
of low mass higgsino-like charginos and neutralinos is expected at the CERN
LHC. The small m(Z2)-m(Z1) mass gap should give rise to a visible
opposite-sign/same flavor dilepton mass edge. At a TeV scale linear e^+e^-
collider, the region of MHDM will mean that the entire spectrum of charginos
and neutralinos are amongst the lightest sparticles, and are most likely to be
produced at observable rates, allowing for a complete reconstruction of the
gaugino-higgsino sector.Comment: 35 pages, including 26 EPS figure
Intercomparison of global river discharge simulations focusing on dam operation --- Part II: Multiple models analysis in two case-study river basins, Missouri-Mississippi and Green-Colorado
We performed a twofold intercomparison of river discharge regulated by dams under multiple meteorological forcings among multiple global hydrological models for a historical period by simulation. Paper II provides an intercomparison of river discharge simulated by five hydrological models under four meteorological forcings. This is the first global multimodel intercomparison study on dam-regulated river flow. Although the simulations were conducted globally, the Missouri-Mississippi and Green-Colorado Rivers were chosen as case-study sites in this study. The hydrological models incorporate generic schemes of dam operation, not specific to a certain dam. We examined river discharge on a longitudinal section of river channels to investigate the effects of dams on simulated discharge, especially at the seasonal time scale. We found that the magnitude of dam regulation differed considerably among the hydrological models. The difference was attributable not only to dam operation schemes but also to the magnitude of simulated river discharge flowing into dams. That is, although a similar algorithm of dam operation schemes was incorporated in different hydrological models, the magnitude of dam regulation substantially differed among the models. Intermodel discrepancies tended to decrease toward the lower reaches of these river basins, which means model dependence is less significant toward lower reaches. These case-study results imply that, intermodel comparisons of river discharge should be made at different locations along the river’s course to critically examine the performance of hydrological models because the performance can vary with the locations
Association between objectively measured physical activity and opioid, hypnotic, or anticholinergic medication use in older people – data from the Physical Activity Cohort Scotland study
Background: Centrally acting medications cause cognitive slowing and incoordination, which could reduce older people’s physical activity levels. This association has not been studied previously.Objectives: To examine the association between opioid, hypnotic and anticholinergic medication, and objectively measured physical activity, in a cohort of older people.Methods: We used data from the Physical Activity Cohort Scotland, a representative cohort of community-dwelling older people aged 65 and over who were assessed at baseline and again 2-3 years later. Objective physical activity was measured using Stayhealthy RT3 accelerometers over 7 days. Baseline medication use (opioid use, hypnotic use, modified anticholinergic risk score [mARS]) was obtained from linked, routinely collected community prescribing records. Cross-sectional and longitudinal associations between baseline medication use and both baseline activity and change in activity over time were analysed using unadjusted and adjusted linear regression models.Results: 310 participants were included in the analysis; mean age 77 (SD 7) years. No association was seen between baseline use of any medication class and baseline physical activity levels in unadjusted or adjusted models. For change in activity over time, there was no difference between users and non-users of hypnotics or opioids. Higher anticholinergic burden was associated with a steeper decline in activity over the follow up period (mARS=0: -7051 counts/24h/yr; mARS=1-2 -15942 counts/24h/yr; mARS>=3 -19544 counts/24h/yr; p=0.03) and this remained robust to multiple adjustments.Conclusion: Anticholinergic burden is associated with greater decline in objectively measured physical activity over time in older people, a finding not seen with hypnotic or opioid use
Whiteness and diasporic Irishness: nation, gender and class
Whiteness is often detached from the notion of diaspora in the recent flurry of interest in the phenomenon, yet it is a key feature of some of the largest and oldest displacements. This paper explores the specific contexts of white racial belonging and status over two centuries in two main destinations of the Irish diaspora, the USA and Britain. Its major contribution is a tracing of the untold story of ‘How the Irish became white in Britain’ to parallel and contrast with the much more fully developed narrative in the USA. It argues that, contrary to popular belief, the racialisation of the Irish in England did not fade away at the end of the nineteenth century but became transmuted in new forms which have continued to place the ‘white’ Irish outside the boundaries of the English nation. These have been strangely ignored by social scientists, who conflate Irishness and working-class identities in England without acknowledging the distinctive contribution of Irish backgrounds to constructions of class difference. Gender locates Irish women and men differently in relation to these class positions, for example allowing mothers to be blamed for the perpetuation of the underclass. Class and gender are also largely unrecognised dimensions of Irish ethnicity in the USA, where the presence of ‘poor white’ neighbourhoods continues to challenge the iconic story of Irish upward mobility. Irishness thus remains central to the construction of mainstream ‘white’ identities in both the USA and Britain into the twenty-first century
- …
